Analysis of Transcriptome Changes Induced by Ptr ToxA in Wheat Provides Insights into the Mechanisms of Plant Susceptibility

被引:47
作者
Pandelova, Iovanna
Betts, Melania F.
Manning, Viola A.
Wilhelm, Larry J.
Mockler, Todd C.
Ciuffetti, Lynda M. [1 ]
机构
[1] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
Gene expression; transcriptome analysis; defense responses; fungal pathogenesis; plant-microbe interactions; host-selective toxin; PYRENOPHORA-TRITICI-REPENTIS; HOST-SELECTIVE TOXINS; FALSE DISCOVERY RATE; DISEASE RESISTANCE; CELL-WALL; SALICYLIC-ACID; TAN SPOT; HYPERSENSITIVE RESPONSE; DEFENSE RESPONSES; PLASMA-MEMBRANE;
D O I
10.1093/mp/ssp045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip((R)) Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.
引用
收藏
页码:1067 / 1083
页数:17
相关论文
共 97 条
[1]   WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix [J].
Anderson, CM ;
Wagner, TA ;
Perret, M ;
He, ZH ;
He, DZ ;
Kohorn, BD .
PLANT MOLECULAR BIOLOGY, 2001, 47 (1-2) :197-206
[2]   Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis-inducing toxin in durum and common wheat [J].
Anderson, JA ;
Effertz, RJ ;
Faris, JD ;
Francl, LJ ;
Meinhardt, SW ;
Gill, BS .
PHYTOPATHOLOGY, 1999, 89 (04) :293-297
[3]   PURIFICATION AND CHARACTERIZATION OF A HOST-SELECTIVE NECROSIS TOXIN FROM PYRENOPHORA-TRITICI-REPENTIS [J].
BALLANCE, GM ;
LAMARI, L ;
BERNIER, CC .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1989, 35 (03) :203-213
[4]  
BALLANCE GM, 1996, CLONING EXPRESSION O
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Elicitors, effectors, and R genes:: The new paradigm and a lifetime supply of questions [J].
Bent, Andrew F. ;
Mackey, David .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2007, 45 :399-436
[7]   Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions [J].
Berger, Susanne ;
Sinha, Alok K. ;
Roitsch, Thomas .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (15-16) :4019-4026
[8]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546
[9]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[10]   Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition [J].
Bonas, U ;
Lahaye, T .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (01) :44-50