Glass Transition Temperature of Polymer Nanocomposites: Prediction from the Continuous-Multilayer Model

被引:9
|
作者
Ahn, Sung Il [1 ]
Ohk, Chang Woo [1 ]
Kim, Jae Hyun [2 ]
Zin, Wang-Cheol [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, Gyeong Buk, South Korea
[2] Samsung Elect Co Ltd, Memory Div, Hwasung City 445701, Gyeonggi, South Korea
关键词
glass transition; nanocomposites; thin films; COMPOSITION DEPENDENCE; BEHAVIOR; FILMS; THICKNESS; EQUIVALENCE; INTERFACE;
D O I
10.1002/polb.21826
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The continuous-multilayer model introduced in our previous study for the T-g behavior of thin films is adapted to nanocomposite systems. T-g enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one-dimensional model for the T-g behavior of thin film to three-dimensional system such as nanocomposite. The tendency of predicted T-g enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting T-g deviation in nanocomposite. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281-2287, 2009
引用
收藏
页码:2281 / 2287
页数:7
相关论文
共 50 条
  • [1] Effect of Particle Agglomeration and Interphase on the Glass Transition Temperature of Polymer Nanocomposites
    Qiao, Rui
    Deng, Hua
    Putz, Karl W.
    Brinson, L. Catherine
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (10) : 740 - 748
  • [2] A Comparison of the Dynamical Relaxations in a Model for Glass Transition in Polymer Nanocomposites and Polymer Thin Films
    Pryamitsyn, Victor
    Ganesan, Venkat
    MACROMOLECULES, 2010, 43 (13) : 5851 - 5862
  • [3] Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging
    Rittigstein, Perla
    Torkelson, John M.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (20) : 2935 - 2943
  • [4] Mobility and glass transition temperature of polymer nanospheres
    Zhang, Chuan
    Boucher, Virginie M.
    Cangialosi, Daniele
    Priestley, Rodney D.
    POLYMER, 2013, 54 (01) : 230 - 235
  • [5] The Role of Polymer Chain Stiffness and Guest Nanoparticle Loading in Improving the Glass Transition Temperature of Polymer Nanocomposites
    Khan, Raja Azhar Ashraaf
    Luo, Mengbo
    Alsaad, Ahmad M. M.
    Qattan, Issam A. A.
    Abedrabbo, Sufian
    Hua, Daoyang
    Zulfqar, Afsheen
    NANOMATERIALS, 2023, 13 (13)
  • [6] Effect of Interfacial Energetics on Dispersion and Glass Transition Temperature in Polymer Nanocomposites
    Natarajan, Bharath
    Li, Yang
    Deng, Hua
    Brinson, L. Catherine
    Schadler, Linda S.
    MACROMOLECULES, 2013, 46 (07) : 2833 - 2841
  • [7] The effect of size and concentration of nanoparticles on the glass transition temperature of polymer nanocomposites
    Serenko, Olga A.
    Roldughin, Vyacheslav I.
    Askadskii, Andrey A.
    Serkova, Elena S.
    Strashnov, Pavel V.
    Shifrina, Zinaida B.
    RSC ADVANCES, 2017, 7 (79): : 50113 - 50120
  • [8] Prediction of the Glass Transition Temperature of Semicrystalline Polymer/Salt Complexes
    Koh, Joo Hwan
    Park, Jung Tae
    Koh, Jong Kwan
    Kim, Jong Hak
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (08) : 793 - 798
  • [9] Novel effects of confinement and interfaces on the glass transition temperature and physical aging in polymer films and nanocomposites
    Torkelson, John M.
    Priestley, Rodney D.
    Rittigstein, Perla
    Mundra, Manish K.
    Roth, Connie B.
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 192 - +
  • [10] Glass Transition Temperature of Polymer Films That Slip
    Clough, Andrew
    Peng, Dongdong
    Yang, Zhaohui
    Tsui, Ophelia K. C.
    MACROMOLECULES, 2011, 44 (06) : 1649 - 1653