Glass Transition Temperature of Polymer Nanocomposites: Prediction from the Continuous-Multilayer Model

被引:9
作者
Ahn, Sung Il [1 ]
Ohk, Chang Woo [1 ]
Kim, Jae Hyun [2 ]
Zin, Wang-Cheol [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, Gyeong Buk, South Korea
[2] Samsung Elect Co Ltd, Memory Div, Hwasung City 445701, Gyeonggi, South Korea
关键词
glass transition; nanocomposites; thin films; COMPOSITION DEPENDENCE; BEHAVIOR; FILMS; THICKNESS; EQUIVALENCE; INTERFACE;
D O I
10.1002/polb.21826
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The continuous-multilayer model introduced in our previous study for the T-g behavior of thin films is adapted to nanocomposite systems. T-g enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one-dimensional model for the T-g behavior of thin film to three-dimensional system such as nanocomposite. The tendency of predicted T-g enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting T-g deviation in nanocomposite. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281-2287, 2009
引用
收藏
页码:2281 / 2287
页数:7
相关论文
共 25 条
[1]   THE GLASS-TRANSITION BEHAVIOR AND THERMODYNAMIC PROPERTIES OF AMORPHOUS POLYSTYRENE [J].
ARAS, L ;
RICHARDSON, MJ .
POLYMER, 1989, 30 (12) :2246-2252
[2]   Glass transition behavior of alumina/polymethylmethacrylate nanocomposites [J].
Ash, BJ ;
Schadler, LS ;
Siegel, RW .
MATERIALS LETTERS, 2002, 55 (1-2) :83-87
[3]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[4]   Quantitative equivalence between polymer nanocomposites and thin polymer films [J].
Bansal, A ;
Yang, HC ;
Li, CZ ;
Cho, KW ;
Benicewicz, BC ;
Kumar, SK ;
Schadler, LS .
NATURE MATERIALS, 2005, 4 (09) :693-698
[5]   Controlling the thermornechanical properties of polymer nanocomposites by tailoring the polymer-particle interface [J].
Bansal, Amitabh ;
Yang, Hoichang ;
Li, Chunzhao ;
Benicewicz, Rian C. ;
Kumar, Sanat K. ;
Schadler, Linda S. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (20) :2944-2950
[6]   Evidence for the shift of the glass transition near the particles in silica-filled elastomers [J].
Berriot, J ;
Montes, H ;
Lequeux, F ;
Long, D ;
Sotta, P .
MACROMOLECULES, 2002, 35 (26) :9756-9762
[7]   Interface and surface effects on the glass transition in thin polystyrene films [J].
DeMaggio, GB ;
Frieze, WE ;
Gidley, DW ;
Zhu, M ;
Hristov, HA ;
Yee, AF .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1524-1527
[8]   Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics [J].
Forrest, JA ;
Mattsson, J .
PHYSICAL REVIEW E, 2000, 61 (01) :R53-R56
[9]   The glass transition in thin polymer films [J].
Forrest, JA ;
Dalnoki-Veress, K .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2001, 94 (1-3) :167-196
[10]   Interface and chain confinement effects on the glass transition temperature of thin polymer films [J].
Forrest, JA ;
DalnokiVeress, K ;
Dutcher, JR .
PHYSICAL REVIEW E, 1997, 56 (05) :5705-5716