GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING, L2-CRITICAL, NONLINEAR SCHRODINGER EQUATION WHEN d=1

被引:75
作者
Dodson, Benjamin [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
CAUCHY-PROBLEM; BLOW-UP; WAVE-EQUATION; ROUGH SOLUTIONS; WEAK SOLUTIONS; ENERGY SPACE; MINIMAL-MASS; RADIAL DATA; REGULARITY; DIMENSIONS;
D O I
10.1353/ajm.2016.0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove global well-posedness and scattering for the defocusing, one dimensional mass-critical nonlinear Schrodinger equation. We make use of a long-time Strichartz estimate and a frequency localized Morawetz estimate. This continues work begun in earlier papers by the author for dimensions d >= 3 and d = 2.
引用
收藏
页码:531 / 569
页数:39
相关论文
共 102 条
[1]  
[Anonymous], 1993, PRINCETON MATH SER
[2]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/EBMS/106
[3]  
[Anonymous], 1998, COURANT LECT NOTES M
[4]  
[Anonymous], ELECT J DIFF EQS
[5]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[6]   Decay estimates for the critical semilinear wave equation [J].
Bahouri, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06) :783-789
[7]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[8]  
BERESTYCKI H, 1979, CR ACAD SCI A MATH, V288, P395
[9]   Scattering in the energy space and below for 3D NLS [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :267-297
[10]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253