An upper bound on the double Roman domination number

被引:35
作者
Amjadi, J. [1 ]
Nazari-Moghaddam, S. [1 ]
Sheikholeslami, S. M. [1 ]
Volkmann, L. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Double Roman domination number; Roman domination; Domination; GRAPHS; EMPIRE;
D O I
10.1007/s10878-018-0286-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A double Roman dominating function (DRDF) on a graph is a function having the property that if , then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with , and if , then vertex v must have at least one neighbor w with . The weight of a DRDF f is the value . The double Roman domination number of a graph G is the minimum weight of a DRDF on G. Beeler et al. (Discrete Appl Math 211:23-29, 2016) observed that every connected graph G having minimum degree at least two satisfies the inequality and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph G of order n with minimum degree at least two, .
引用
收藏
页码:81 / 89
页数:9
相关论文
共 15 条
[1]  
Abdollahzadeh Ahangar H, 2017, ARS COMBIN
[2]   Trees with Double Roman Domination Number Twice the Domination Number Plus Two [J].
Ahangar, H. Abdollahzadeh ;
Amjadi, J. ;
Chellali, M. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3) :1081-1088
[3]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[4]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[5]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[6]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[7]  
Haynes TW., 1998, FUNDAMENTALS DOMINAT
[8]   Defending the Roman Empire - A new strategy [J].
Henning, MA ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2003, 266 (1-3) :239-251
[9]  
Jafari Rad N, 2018, DISCUSS MATH GRAPH T
[10]   DOMINATION IN GRAPHS WITH MINIMUM DEGREE-2 [J].
MCCUAIG, W ;
SHEPHERD, B .
JOURNAL OF GRAPH THEORY, 1989, 13 (06) :749-762