Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

被引:197
作者
Khalid, Syed [1 ]
Cao, Chuanbao [1 ]
Wang, Lin [1 ]
Zhu, Youqi [1 ]
机构
[1] Beijing Inst Technol, Res Ctr Mat Sci, Beijing 100081, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; LITHIUM STORAGE; NICKEL-OXIDE; POSITIVE ELECTRODE; SCALE SYNTHESIS; NANOSHEETS; CARBON; ARRAYS; NANOPARTICLES; CATHODE;
D O I
10.1038/srep22699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm(-2) & 19.1 Wh Kg(-1) and 194 mF cm(-2) & 4.5 Wh Kg(-1) (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm(-2). The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.
引用
收藏
页数:13
相关论文
共 60 条
[1]   One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance [J].
Chen, Hao ;
Hu, Linfeng ;
Yan, Yan ;
Che, Renchao ;
Chen, Min ;
Wu, Limin .
ADVANCED ENERGY MATERIALS, 2013, 3 (12) :1636-1646
[2]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[3]  
Conway B.E., 1999, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
[4]   Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors [J].
Dai, Chao-Shuan ;
Chien, Pei-Yi ;
Lin, Jeng-Yu ;
Chou, Shu-Wei ;
Wu, Wen-Kai ;
Li, Ping-Hsuan ;
Wu, Kuan-Yi ;
Lin, Tsung-Wu .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12168-12174
[5]   A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors [J].
Ding, Rui ;
Qi, Li ;
Wang, Hongyu .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) :3621-3633
[6]   Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device [J].
Feng, Jin-Xian ;
Ye, Sheng-Hua ;
Lu, Xue-Feng ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) :11444-11451
[7]   High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes [J].
Fu, Yan ;
Song, Jinmei ;
Zhu, Youqi ;
Cao, Chuanbao .
JOURNAL OF POWER SOURCES, 2014, 262 :344-348
[8]   New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon [J].
Ganesh, V. ;
Pitchumani, S. ;
Lakshminarayanan, V. .
JOURNAL OF POWER SOURCES, 2006, 158 (02) :1523-1532
[9]   Hierarchical Nanostructured 3D Flowerlike BiOClxBr1-x Semiconductors with Exceptional Visible Light Photocatalytic Activity (vol 3, pg 186, 2013) [J].
Gnayem, H. ;
Sasson, Y. .
ACS CATALYSIS, 2013, 3 (05) :861-861
[10]   Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors [J].
Huang, Cheng-Wei ;
Teng, Hsisheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (10) :A739-A744