Local existence of solutions to dissipative nonlinear evolution equations with mixed types

被引:0
|
作者
Wei, Hu [1 ]
Jiang, Mina [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolution equation; Local existence; Contraction mapping principle; HYPERBOLIC CONSERVATION-LAWS; DIFFERENT END STATES; DIFFUSION WAVES; ELLIPTICITY; SYSTEM; CONVERGENCE; RATES;
D O I
10.1016/j.na.2009.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the local existence of solutions to the Cauchy problems for the following nonlinear evolution equations with mixed types {psi(t) = -(1 - alpha)psi - theta(x) + alpha psi(xx), theta(t) = -(1 - alpha)theta + gamma psi(x) + 2 psi theta(x) + alpha theta(xx), with initial data (psi, theta)(x, 0) = (psi(0)(x), theta(0)(x)) -> (psi(+/-), theta(+/-)), as x -> +/-infinity, where alpha and gamma are positive constants satisfying alpha < 1, gamma < alpha(1 - alpha). Through constructing an approximation solution sequence, we obtain the local existence by using the contraction mapping principle. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5897 / 5905
页数:9
相关论文
共 50 条