Optimal control of a basic model of oncolytic virotherapy

被引:2
作者
Abu-Rqayiq, Abdullah [1 ]
Alayed, Haneen [2 ]
Zannon, Mohammad [3 ]
机构
[1] Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX 78412 USA
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[3] Tafilah Tech Univ, Dept Math & Stat, At Tafilah, Jordan
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2022年 / 24卷 / 02期
关键词
Oncolytic virotherapy; optimal control; tumor cells; hamiltonian; DEFINING CONDITIONS; VIRUS;
D O I
10.22436/jmcs.024.02.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper applies an optimal control approach to study the dynamics of a basic Oncolytic Virotherapy model. This study applies mathematical modeling based on an established basic oncolytic virotherapy model for tumor growth. Choosing an appropriate control strategy is essential to reduce the cost of the therapy. By applying optimal control theory, we seek to minimize the cost of virotherapy and reduce the load of tumor cells. The existence of optimal control is proved. State solution given an optimal strategy and the optimal control is determined. Numerical simulation is carried out to visualize and support our results.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
[21]   Oncolytic virotherapy: a potential therapeutic approach for cholesteatoma [J].
Lipschitz, Noga ;
Earl, Brian R. ;
Cripe, Timothy P. ;
Samy, Ravi N. .
CURRENT OPINION IN OTOLARYNGOLOGY & HEAD AND NECK SURGERY, 2020, 28 (05) :281-285
[22]   Lytic cycle: A defining process in oncolytic virotherapy [J].
Wang, Yujie ;
Tian, Jianjun Paul ;
Wei, Junjie .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) :5962-5978
[23]   Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy [J].
Ghasemi, Matin ;
Abbasi, Laleh ;
Naeini, Leila Ghanbari ;
Kokabian, Pajman ;
Fard, Najmeh Nameh Goshay ;
Givtaj, Nozar .
FRONTIERS IN IMMUNOLOGY, 2023, 13
[24]   BOUNDEDNESS AND STABILIZATION IN A HAPTOTAXIS MODEL OF ONCOLYTIC VIROTHERAPY WITH NONLINEAR SENSITIVITY [J].
Liu, Fuping ;
Zheng, Pan .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (03) :644-658
[25]   Global boundedness in an oncolytic virotherapy model with generalized logistic source [J].
Wen, Qiang ;
Liu, Bin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01)
[26]   Global boundedness in an oncolytic virotherapy model with generalized logistic source [J].
Qiang Wen ;
Bin Liu .
Zeitschrift für angewandte Mathematik und Physik, 2023, 74
[27]   The combination therapy of oncolytic virotherapy [J].
Wang, Yue ;
Zhu, Mengying ;
Chi, Huanyu ;
Liu, Yang ;
Yu, Guilin .
FRONTIERS IN PHARMACOLOGY, 2024, 15
[28]   Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model [J].
Noma Susan Senekal ;
Khaphetsi Joseph Mahasa ;
Amina Eladdadi ;
Lisette de Pillis ;
Rachid Ouifki .
Bulletin of Mathematical Biology, 2021, 83
[29]   Oncolytic Virotherapy Reaches Adolescence [J].
Hammill, Adrienne M. ;
Conner, Joseph ;
Cripe, Timothy P. .
PEDIATRIC BLOOD & CANCER, 2010, 55 (07) :1253-1263
[30]   Delivery and Biosafety of Oncolytic Virotherapy [J].
Li, Lizhi ;
Liu, Shixin ;
Han, Duoduo ;
Tang, Bin ;
Ma, Jian .
FRONTIERS IN ONCOLOGY, 2020, 10