Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors

被引:103
作者
Du, Ya-Ping [1 ]
Zhang, Ya-Wen [1 ]
Sun, Ling-Dong [1 ]
Yan, Chun-Hua [1 ]
机构
[1] Peking Univ, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Ch, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
关键词
DOPED LAF3 NANOPARTICLES; SINGLE-SOURCE PRECURSOR; NEAR-INFRARED EMISSION; MONODISPERSE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; CDSE NANOCRYSTALS; SHAPE CONTROL; TRIFLUOROACETATE PRECURSORS; COPRECIPITATION METHOD; LUMINESCENT PROPERTIES;
D O I
10.1039/b909145a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This paper reports the first systematical synthesis of near-monodisperse potassium and lithium rare earth (RE) fluoride (K(Li)REF4) nanocrystals with diverse shapes (cubic KLaF4 and KCeF4 wormlike nanowires, nanocubes and nanopolyhedra; cubic LiREF4 (RE = Pr to Gd, Y) nanopolyhedra; tetragonal LiREF4 (RE = Tb to Lu, Y) rhombic nanoplates) via co-thermolysis of Li(CF3COO) or K(CF3COO) and RE(CF3COO)(3) in a hot oleic acid/oleylamine/1-octadecene solution. The effects of the solvent composition, reaction temperature and time on the crystal phase purity, shape, and size of the as-prepared nanocrystals have been investigated in detail. The formation of monodisperse nanocrystals is found to strongly depend upon the nature of both alkali metals from Li to K, and the rare earth series from La to Lu and Y. Based on the series of experimental results, a controlled-growth mechanism has also been proposed. In addition, the ease of doping of these as-synthesized host nanocrystals for designed luminescence properties is assessed. For example, monodisperse and single-crystalline Eu3+ doped KGdF4, Yb3+ and Er3+ co-doped LiYF4 nanocrystals redispersed in cyclohexane exhibit visible room-temperature red and green emissions under ultraviolet (UV) excitation and near infrared (NIR) 980 nm laser excitation, respectively.
引用
收藏
页码:8574 / 8581
页数:8
相关论文
共 76 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]  
[Anonymous], 1999, PHOSPHOR HDB
[3]   Powders and coatings of LiYF4:Eu3+ obtained via an original way based on the sol-gel process [J].
Boyer, D ;
Mahiou, R .
CHEMISTRY OF MATERIALS, 2004, 16 (13) :2518-2521
[4]   Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J].
Boyer, John-Christopher ;
Cuccia, Louis A. ;
Capobianco, John A. .
NANO LETTERS, 2007, 7 (03) :847-852
[5]   Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J].
Boyer, John-Christopher ;
Vetrone, Fiorenzo ;
Cuccia, Louis A. ;
Capobianco, John A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (23) :7444-7445
[6]   Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm [J].
Braud, A ;
Girard, S ;
Doualan, JL ;
Thuau, M ;
Moncorgé, R ;
Tkachuk, AM .
PHYSICAL REVIEW B, 2000, 61 (08) :5280-5292
[7]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[8]   Synthesis of square gadolinium-oxide nanoplates [J].
Cao, YC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7456-7457
[9]   Size dependence of structural metastability in semiconductor nanocrystals [J].
Chen, CC ;
Herhold, AB ;
Johnson, CS ;
Alivisatos, AP .
SCIENCE, 1997, 276 (5311) :398-401
[10]   Magnetic superlattices and their nanoscale phase transition effects [J].
Cheon, J ;
Park, JI ;
Choi, JS ;
Jun, YW ;
Kim, S ;
Kim, MG ;
Kim, YM ;
Kim, YJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (09) :3023-3027