Image super-resolution network based on a multi-branch attention mechanism

被引:12
作者
Yang, Xin
Guo, Yingqing
Li, Zhiqiang
Zhou, Dake
机构
[1] Nanjing, China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Residual network; Channel split; Channel attention; RESOLUTION;
D O I
10.1007/s11760-021-01870-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a member of low-level visual tasks, image super-resolution (SR) is now mostly implemented by deep learning. Although the deeper convolution neural network can bring larger receptive field, it will increase the amount of calculation, make the training difficult and reduce efficiency. In addition, the feature information obtained by each channel plays a different and important role in the detail recovery during the SR process. To settle the above problems and improve the performance, we develop a multi-branch attention SR model. The main network contains multiple residual bodies, which are composed of several residual units. Additionally, we construct a multi-branch attention mechanism, which divides all channels into equal parts. Then, the network learns the relationship between channels and focuses more on the high-frequency feature channels. Experimental results show that the proposed algorithm is superior to the state-of-the-art algorithms in terms of subjective visual quality and objective evaluation criteria.
引用
收藏
页码:1397 / 1405
页数:9
相关论文
共 37 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]  
[Anonymous], 2001, 8 IEEE INT C COMPUTE, DOI [10.1109/ICCV.2001.937655, DOI 10.1109/ICCV.2001.937655]
[3]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[4]   A Deep Convolutional Neural Network with Selection Units for Super-Resolution [J].
Choi, Jae-Seok ;
Kim, Munchurl .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1150-1156
[5]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[6]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[7]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[8]   Manga109 Dataset and Creation of Metadata [J].
Fujimoto, Azuma ;
Ogawa, Toru ;
Yamamoto, Kazuyoshi ;
Matsui, Yusuke ;
Yamasaki, Toshihiko ;
Aizawa, Kiyoharu .
PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON COMICS ANALYSIS, PROCESSING AND UNDERSTANDING (MANPU 2016), 2016,
[9]   Image Super-Resolution With Sparse Neighbor Embedding [J].
Gao, Xinbo ;
Zhang, Kaibing ;
Tao, Dacheng ;
Li, Xuelong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (07) :3194-3205
[10]  
Goodman J. W., 1968, Introduction To Fourier Optics