Tight focusing of electromagnetic fields by large-aperture mirrors

被引:9
|
作者
Shipilo, D. E. [1 ,2 ,3 ]
Nikolaeva, I. A. [1 ,2 ]
Fedorov, V. Yu [3 ,4 ]
Tzortzakis, S. [4 ,5 ,6 ]
Couairon, A. [7 ]
Panov, N. A. [1 ,2 ,3 ]
Kosareva, O. G. [1 ,2 ,3 ,8 ]
机构
[1] Moscow MV Lomonosov State Univ, Int Laser Ctr, 1-62 Leninskie Gori, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, 1-62 Leninskie Gori, Moscow 119991, Russia
[3] Russian Acad Sci, PN Lebedev Phys Inst, 53 Leninskiy Prospect, Moscow 119991, Russia
[4] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
[5] Fdn Res & Technol Hellas FORTH, IESL, POB 1527, GR-71110 Iraklion, Greece
[6] Univ Crete, Mat Sci & Technol Dept, Iraklion 71003, Greece
[7] Ecole Polytech, Inst Polytech Paris, CNRS, CPHT, Route Saclay, F-91128 Palaiseau, France
[8] Nankai Univ, Inst Modern Opt, Tianjin 300350, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
CONTRAST;
D O I
10.1103/PhysRevE.100.033316
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive nonparaxial input conditions for simulations of tightly focused electromagnetic fields by means of unidirectional nonparaxial vectorial propagation equations. The derivation is based on the geometrical optics transfer of the incident electric field from significantly curved reflecting surfaces such as parabolic and conical mirrors to the input plane, with consideration of the finite thickness of the focusing element and large convergence angles, making the propagation vectorial and nonparaxial. We have benchmarked numerical solutions of propagation equations initiated with the nonparaxial input conditions against the solutions of Maxwell equations obtained by vectorial diffraction integrals. Both transverse and longitudinal components of the electric field obtained by these methods are in excellent agreement.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling and Implementation of Synchronization for Large-Aperture Electromagnetic MEMS Mirrors
    Xu, Fahu
    Zhao, Lingxiao
    MICROMACHINES, 2025, 16 (03)
  • [2] Progress toward large-aperture membrane mirrors
    Rotgé, JR
    Dass, SC
    Marker, DK
    Carreras, RA
    Lutz, B
    Duneman, D
    IMAGING TECHNOLOGY AND TELESCOPES, 2000, 4091 : 74 - 82
  • [3] Application axicons in a large-aperture focusing system
    Khonina S.N.
    Volotovsky S.G.
    Optical Memory and Neural Networks, 2014, 23 (4) : 201 - 217
  • [4] Reflectivity mapping of large-aperture mirrors with cavity ringdown technique
    Han, Yanling
    Li, Bincheng
    Gao Lifeng
    Xiong, Shengming
    APPLIED OPTICS, 2017, 56 (04) : C35 - C40
  • [5] LARGE-APERTURE HOLOGRAPHIC SPHERICAL BEAM-SPLITTER MIRRORS
    MAGARINOS, JR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1374 - 1374
  • [6] Absolute measurement of focusing properties of a large-aperture diffractive lens
    Cai, Zhiqian
    Zhang, Junyong
    Yang, Pengqian
    Zhu, Jianqiang
    OPTICS LETTERS, 2023, 48 (16) : 4276 - 4279
  • [7] Accurate measurement of deflection of primary and secondary mirrors of large-aperture telescope
    Chen B.
    Wang J.
    Zhang Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (23): : 3013 - 3020
  • [8] Overview of key technologies for segmented mirrors of large-aperture optical telescopes
    Huo Yin-long
    Yang Fei
    Wang Fu-guo
    CHINESE OPTICS, 2022, 15 (05) : 973 - 982
  • [9] Error Calibration Method of Null Correctors for Large-Aperture Aspherical Mirrors
    Xu Qiuyun
    Kong Lingchen
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [10] Support schemes and thermal effects analyses of large-aperture interferometer mirrors
    Xu, RW
    Liu, LR
    Zhu, LA
    Liu, HZ
    INTERFEROMETRY XII: TECHNIQUES AND ANALYSIS, 2004, 5531 : 441 - 449