Gabor windows supported on [-1,1] and compactly supported dual windows

被引:25
作者
Christensen, Ole [3 ]
Kim, Hong Oh [2 ]
Kim, Rae Young [1 ]
机构
[1] Yeungnam Univ, Dept Math, Gyongsan 712749, Gyeongsangbuk D, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[3] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
Gabor system; Gabor frame; Dual frame; Dual window; FRAMES;
D O I
10.1016/j.acha.2009.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a bounded function g supported on [-1, 1] and a modulation parameter b is an element of inverted left perpendicular1/2, 1inverted right perpendicular for which the Gabor system {E(mb)T(n)g}(m,n is an element of Z) is a frame. We show that such a frame always has a compactly supported dual window. More precisely, we show that if b < N/N+1 for some N is an element of N, it is possible to find a dual window supported on [-N, N]. Under the additional assumption that g is continuous and only has a finite number of zeros on inverted left perpendicular-1, 1inverted right perpendicular, we characterize the frame property of {E(mb)T(n)g}(m,n is an element of Z). As a consequence we obtain easily verifiable criteria for a function g to generate a Gabor frame with a dual window having compact support of prescribed size. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 10 条
[1]   Gabor frames, unimodularity, and window decay [J].
Bölcskei, H ;
Janssen, AJEM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (03) :255-276
[2]  
CHRISTENSEN O, 2009, J FOURIER A IN PRESS
[3]   Pairs of dual Gabor frame generators with compact support and desired frequency localization [J].
Christensen, Ole .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) :403-410
[4]  
Christensen O, 2008, APPL NUMER HARMON AN, P1, DOI 10.1007/978-0-8176-4678-3_1
[5]  
GROCHENIG K. H., 2000, Foundations of time-frequency analysis
[6]   CONTINUOUS AND DISCRETE WAVELET TRANSFORMS [J].
HEIL, CE ;
WALNUT, DF .
SIAM REVIEW, 1989, 31 (04) :628-666
[7]  
JANSSEN AJE, 1998, GABOR ANAL THEORY AP
[8]   Gabor dual spline windows [J].
Laugesen, R. S. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (02) :180-194
[9]   Weyl-Heisenberg frames and Riesz bases in L-2(IRd) [J].
Ron, A ;
Shen, ZW .
DUKE MATHEMATICAL JOURNAL, 1997, 89 (02) :237-282
[10]   FRAMES AND STABLE BASES FOR SHIFT-INVARIANT SUBSPACES OF L(2)(R(D)) [J].
RON, A ;
SHEN, ZW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (05) :1051-1094