A POISSON ALLOCATION OF OPTIMAL TAIL

被引:4
作者
Marko, Roland [1 ]
Timar, Adam [2 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
[2] Alfred Renyi Inst Math, Realtanuda U 13-15, H-1053 Budapest, Hungary
关键词
Fair allocation; Poisson process; translation-equivariant mapping; GRAVITATIONAL ALLOCATION; LEBESGUE; POINTS;
D O I
10.1214/15-AOP1001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The allocation problem for a d-dimensional Poisson point process is to find a way to partition the space to parts of equal size, and to assign the parts to the configuration points in a measurable, "deterministic" (equivariant) way. The goal is to make the diameter R of the part assigned to a configuration point have fast decay. We present an algorithm for d >= 3 that achieves an O(exp(- cR(d))) tail, which is optimal up to c. This improves the best previously known allocation rule, the gravitational allocation, which has an exp(-R1+o(1)) tail. The construction is based on the Ajtai-Komlos-Tusnady algorithm and uses the Gale-Shapley-Hoffman-Holroyd-Peres stable marriage scheme (as applied to allocation problems).
引用
收藏
页码:1285 / 1307
页数:23
相关论文
共 11 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]   PHASE TRANSITIONS IN GRAVITATIONAL ALLOCATION [J].
Chatterjee, Sourav ;
Peled, Ron ;
Peres, Yuval ;
Romik, Dan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (04) :870-917
[3]   Gravitational allocation to Poisson points [J].
Chatterjee, Sourav ;
Peled, Ron ;
Peres, Yuval ;
Romik, Dan .
ANNALS OF MATHEMATICS, 2010, 172 (01) :617-671
[4]   A stable marriage of poisson and lebesgue [J].
Hoffman, Christopher ;
Holroyd, Alexander E. ;
Peres, Yuval .
ANNALS OF PROBABILITY, 2006, 34 (04) :1241-1272
[5]   Extra heads and invariant allocations [J].
Holroyd, AE ;
Peres, Y .
ANNALS OF PROBABILITY, 2005, 33 (01) :31-52
[6]  
Holroyd AE, 2001, ANN PROBAB, V29, P1405
[7]   Poisson matching [J].
Holroyd, Alexander E. ;
Pemantle, Robin ;
Peres, Yuval ;
Schramm, Oded .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01) :266-287
[8]   OPTIMAL TRANSPORT FROM LEBESGUE TO POISSON [J].
Huesmann, Martin ;
Sturm, Karl-Theodor .
ANNALS OF PROBABILITY, 2013, 41 (04) :2426-2478
[9]   Connected allocation to Poisson points in R2 [J].
Krikun, Maxim .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :140-145
[10]  
STOYAN D., 1987, STOCHASTIC GEOMETRY