Investigation of positive definite solution of nonlinear matrix equation Xp = Q+Σmi=1 A*i Xδ Ai

被引:0
作者
Jin, Zhixiang [1 ]
Zhai, Chengbo [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
关键词
Hermitian positive definite solution; Nonlinear matrix equation; Thompson metric; Perturbation analysis; 15A24; 47H10; EXISTENCE;
D O I
10.1007/s40314-021-01463-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the nonlinear matrix equation X-p=Q+Sigma(m)(i)=1 A(i)(*)X(delta)A(i), where A(i)(i=1,2,...,m) are n x n nonsingular complex matrices, Q is a n x n Hermitian positive definite (HPD) matrix, p >= 1,m >= 1 are positive integers, and delta is an element of(0,1). We discuss the solution of this equation via properties of Thompson metric and two fixed point theorems in ordered Banach spaces and estimate the bounds of the HPD solution. Furthermore, perturbation analysis is investigated.
引用
收藏
页数:14
相关论文
共 31 条