On constructing biharmonic maps and metrics

被引:57
作者
Baird, P [1 ]
Kamissoko, D [1 ]
机构
[1] Univ Bretagne Occidentale, Dept Math, F-29285 Brest, France
关键词
biharmonic map; biharmonic metric; isoparametric function; Einstein manifold;
D O I
10.1023/A:1021213930520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct biharmonic nonharmonic maps between Riemannian manifolds M and N by first making the ansatz that omega: M --> N be a harmonic map and then deforming the metric conformally on M to render omega biharmonic. The deformation will, in general, destroy the harmonicity of omega. We call a metric which renders the identity map biharmonic, a biharmonic metric. On an Einstein manifold, the only conformally equivalent biharmonic metrics are defined by isoparametric functions.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 16 条
[11]  
HEINTZE E, 2000, ARXIVMATHDG0004028
[12]  
Jiang G. Y., 1986, CHINESE ANN MATH A, V7, P130
[13]  
JIANG G. Y., 1986, CHINESE ANN MATH A, V7, P389
[14]  
Kamke E, 1977, DIFFERENTIALGLEICHUN
[15]  
Thorbergsson G, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P963, DOI 10.1016/S1874-5741(00)80013-8
[16]   ISOPARAMETRIC FUNCTIONS ON RIEMANNIAN-MANIFOLDS .1. [J].
WANG, QM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :639-646