Counting finite algebras in the post varieties

被引:7
作者
Berman, J [1 ]
Idziak, P
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Jagiellonian Univ, Dept Comp Sci, Krakow, Poland
关键词
D O I
10.1142/S0218196700000121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The G-spectrum of a class of algebras is the function that counts, up to isomorphism, the number of at most k-generated algebras in the class, for k = 1, 2,.... We consider the G-spectra of the varieties of algebras generated by a single two-element algebra. We show that such spectra are either polynomial, exponential, or at least doubly exponential as a function of k. For the varieties that have polynomial or exponential G-spectra we provide an exact formula for the function.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 17 条
[1]  
[Anonymous], 1941, ANN MATH STUDIES
[2]  
BERMAN J, 2000, UNPUB GEN COMPLEXITY
[3]  
BERMAN J, 1980, P 10 INT S MULT VAL, P195
[4]   Fine spectra and limit laws .1. First-order laws [J].
Burris, S ;
Sarkozy, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (03) :468-498
[5]   Fine spectra and limit laws .2. First-order 0-1 laws [J].
Burris, S ;
Compton, K ;
Odlyzko, A ;
Richinond, B .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (04) :641-652
[6]  
BURRIS S, 1996, INT J ALGEBR COMPUT, V6, P269
[7]  
Burris Stanley, 1997, DIMACS SERIES DISCRE, V33, P33
[8]  
CLARK DM, 1980, ALGEBR UNIV, V11, P365
[9]  
COMPTON K, COMMUNICATION
[10]  
Idziak Pawel M., 1995, DIMACS SERIES DISCRE, V33, P79