Role of Relative A-Maximal Monotonicity in Overrelaxed Proximal-Point Algorithms with Applications

被引:7
作者
Agarwal, R. P. [2 ]
Verma, R. U. [1 ]
机构
[1] Int Publicat, Orlando, FL USA
[2] Florida Inst Technol, Melbourne, FL 32901 USA
关键词
Variational inclusions; Maximal monotone mapping; Relative A-maximal monotone mapping; Generalized resolvent operator; SYSTEM; (A;
D O I
10.1007/s10957-009-9554-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A general framework for a class of overrelaxed proximal point algorithms based on the notion of relative A-maximal monotonicity is introduced; then, the convergence analysis for solving a general class of nonlinear variational inclusion problems is explored. The framework developed in this communication is quite suitable, unlike other existing notions of generalized maximal monotonicity, including A-maximal (m)-relaxed monotonicity in literature, to generalize first-order nonlinear evolution equations/evolution inclusions based on the generalized nonlinear Yosida approximations in Hilbert spaces as well as in Banach spaces.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 28 条
[11]   Composition duality and maximal monotonicity [J].
Robinson, SM .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :1-13
[12]  
Rockafellar R. T., 1976, Mathematics of Operations Research, V1, P97, DOI 10.1287/moor.1.2.97
[13]   MONOTONE OPERATORS AND PROXIMAL POINT ALGORITHM [J].
ROCKAFELLAR, RT .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :877-898
[14]   Alternating projection-proximal methods for convex programming and variational inequalities [J].
Tseng, P .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :951-965
[15]  
Verma RU, 2006, J OPTIMIZ THEORY APP, V129, P457, DOI 10.1007/s10957-006-9079
[16]  
Verma R.U., 2009, ADV NONLINEAR VARIAT, V12, P73
[17]  
Verma R.U., 2008, MATH SCI RES J, V12, P192
[18]   A-monotone nonlinear relaxed cocoercive variational inclusions [J].
Verma, Ram U. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (02) :386-396
[19]   Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A, η)-monotone mappings [J].
Verma, Ram U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :969-975
[20]   Generalized over-relaxed proximal algorithm based on A-maximal monotonicity framework and applications to inclusion problems [J].
Verma, Ram U. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (7-8) :1587-1594