Role of Relative A-Maximal Monotonicity in Overrelaxed Proximal-Point Algorithms with Applications

被引:7
作者
Agarwal, R. P. [2 ]
Verma, R. U. [1 ]
机构
[1] Int Publicat, Orlando, FL USA
[2] Florida Inst Technol, Melbourne, FL 32901 USA
关键词
Variational inclusions; Maximal monotone mapping; Relative A-maximal monotone mapping; Generalized resolvent operator; SYSTEM; (A;
D O I
10.1007/s10957-009-9554-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A general framework for a class of overrelaxed proximal point algorithms based on the notion of relative A-maximal monotonicity is introduced; then, the convergence analysis for solving a general class of nonlinear variational inclusion problems is explored. The framework developed in this communication is quite suitable, unlike other existing notions of generalized maximal monotonicity, including A-maximal (m)-relaxed monotonicity in literature, to generalize first-order nonlinear evolution equations/evolution inclusions based on the generalized nonlinear Yosida approximations in Hilbert spaces as well as in Banach spaces.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 28 条
[1]  
AGARWAL RP, 2009, NONLINEAR F IN PRESS
[2]  
[Anonymous], 1989, SIAM STUDIES APPL MA
[3]  
Attouch H., 1984, APPL MATH SERIES
[4]  
Dhage B. C., 2005, COMMUNICATIONS APPL, V12, P37
[5]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[6]   NONLINEAR SEMI-GROUPS IN HILBERT SPACE [J].
KOMURA, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (04) :493-+
[7]   On a new system of nonlinear A-monotone multivalued variational inclusions [J].
Lan, Heng-You ;
Kim, Jin Ho ;
Cho, Yeol Je .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :481-493
[8]  
MARTINET R, 1970, RIRO, V4, P154
[9]   Mixed equilibrium problems: Sensitivity analysis and algorithmic aspect [J].
Moudafi, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (8-9) :1099-1108
[10]   Finding a zero of the sum of two maximal monotone operators [J].
Moudafi, A ;
Thera, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (02) :425-448