Effect of Rotational Speed on Microstructure and Mechanical Properties of 2060 Aluminum Alloy RFSSW Joint

被引:20
作者
Chai, Peng [1 ,2 ]
Wang, Yue [1 ,2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] AVIC Mfg Technol Inst, Lab FSW, Beijing 100024, Peoples R China
关键词
Refill friction stir spot welding; 2060 Aluminum alloy; Microstructure; Mechanical properties; SPOT-WELDING PROCESS; FRICTION; OPTIMIZATION; PARAMETERS; BEHAVIOR; KEYHOLE;
D O I
10.1007/s12540-019-00291-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refill friction stir spot welding (RFSSW) is used to weld 3.2-mm-thick 2060 aluminum alloy sheets. In this study, we investigated the formation, microstructures and mechanical properties of the RFSSW joint. The results show that increasing the rotational speed is beneficial to eliminating annular groove but increasing the flash. The hook of the joint at each rotational speed is downward bending. The void at the bottom of the sleeve-affected zone (SAZ) and incomplete bonding at the lap interface initially increase and then decrease with the rotational speed increments from 2000 to 2600 rpm. The microstructure distribution at the bottom of the stir zone (SZ) is similar to that at the interface of the SAZ/thermo-mechanically affected zone (TMAZ), including SZ, TMAZ, heat-affected zone, and the base material. The microhardness values of the joint gradually decrease along the sheet thickness at each welding condition. Furthermore, the microhardness at the SAZ/TMAZ interface initially increases to the maximum at 2400 rpm and then decrease to the minimum at 2600 rpm. Moreover, the tensile-shear failure load of the joint initially increases and then decreases with increasing rotational speeds. The fracture positions of tensile-shear specimens are related to microstructure distribution, microhardness, material flow, and welding defects.
引用
收藏
页码:1574 / 1585
页数:12
相关论文
共 27 条
[1]   In situ assessment of lattice strain in an Al-Li alloy [J].
Beaudoin, A. J. ;
Obstalecki, M. ;
Tayon, W. ;
Hemquist, M. ;
Mudrock, R. ;
Kenesei, P. ;
Lienert, U. .
ACTA MATERIALIA, 2013, 61 (09) :3456-3464
[2]   Friction stir weld of 2060 Al-Cu-Li alloy: Microstructure and mechanical properties [J].
Cai, B. ;
Zheng, Z. Q. ;
He, D. Q. ;
Li, S. C. ;
Li, H. P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 649 :19-27
[3]   Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds [J].
Campanelli, Leonardo Contri ;
Suhuddin, Uceu Fuad Hasan ;
Sette Antonialli, Armando Italo ;
dos Santos, Jorge Fernandez ;
de Alcantara, Nelson Guedes ;
Bolfarini, Claudemiro .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (04) :515-521
[4]   Tensile Properties of Friction Stir Welding Aluminum Alloys Used in Aviation [J].
Chen Zhen-zhong ;
Li Ming ;
Ma Xiao-ge ;
Xiao Yao .
MATERIALS, MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 842 :466-469
[5]   Taguchi approach for the optimization of refill friction stir spot welding parameters for AA2198-T8 aluminum alloy [J].
de Castro, Camila Caroline ;
Plaine, Athos Henrique ;
de Alcantara, Nelson Guedes ;
dos Santos, Jorge Fernandez .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (5-8) :1927-1936
[6]  
Guo ZH, 2011, ADV MAT RES, V346, P314, DOI [10.4028/www.scientific.net/AMR.331.314, DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.331.314]
[7]   AA7075 bit for repairing AA2219 keyhole by filling friction stir welding [J].
Han, Bing ;
Huang, Yongxian ;
Lv, Shixiong ;
Wan, Long ;
Feng, Jicai ;
Fu, Guansheng .
MATERIALS & DESIGN, 2013, 51 :25-33
[8]   Comparison of single and double pass friction stir welding of skin-stringer aviation aluminium alloy [J].
He, D. ;
Yang, K. ;
Li, M. ;
Guo, H. ;
Li, N. ;
Lai, R. ;
Ye, S. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2013, 18 (07) :610-615
[9]   Effect of Tool Geometry on Material Flow Behavior of Refill Friction Stir Spot Welding [J].
Ji, Shude ;
Wang, Yue ;
Li, Zhengwei ;
Yue, Yumei ;
Chai, Peng .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2017, 70 (06) :1417-1430
[10]   New technique for eliminating keyhole by active-passive filling friction stir repairing [J].
Ji, Shude ;
Meng, Xiangchen ;
Zeng, Yaming ;
Ma, Lin ;
Gao, Shuangsheng .
MATERIALS & DESIGN, 2016, 97 :175-182