Ito's theorem and metabelian Leibniz algebras

被引:7
作者
Agore, A. L. [1 ]
Militaru, G. [2 ]
机构
[1] Vrije Univ Brussel, Fac Engn, Brussels, Belgium
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 1, Romania
关键词
metabelian Leibniz (Lie) algebras; 17A32; 17A60; 17B30; SOLVABLE LIE-ALGEBRAS; MAXIMAL DIMENSION; CLASSIFICATION; EQUIVALENCE; IDEALS;
D O I
10.1080/03081087.2014.992771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the celebrated Ito's theorem for groups remains valid at the level of Leibniz algebras: if g is a Leibniz algebra such that g = A + B, for two abelian subalgebras A and B, then g is metabelian, i.e. [[g, g], [g, g]] = 0. A structure-type theorem for metabelian Leibniz/Lie algebras is proved. All metabelian Leibniz algebras having the derived algebra of dimension 1 are described, classified and their automorphisms groups are explicitly determined as subgroups of a semidirect product of groups P* (sic) (k* x Aut(k) (P)) associated to any vector space P.
引用
收藏
页码:2187 / 2199
页数:13
相关论文
共 33 条
[1]   An algorithm to determine the isomorphism classes of 4-dimensional complex Lie algebras [J].
Agaoka, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 345 (1-3) :85-118
[2]   Extending structures for Lie algebras [J].
Agore, A. L. ;
Militaru, G. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02) :169-193
[3]   Unified products for Leibniz algebras. Applications [J].
Agore, A. L. ;
Militaru, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) :2609-2633
[4]  
Amberg B, 1992, PRODUCTS OF GROUPS
[5]  
Burde D., ARXIV12123113
[6]  
Burde D, 2012, J LIE THEORY, V22, P741
[7]   On split Leibniz algebras [J].
Calderon Martin, Antonio J. ;
Sanchez Delgado, Jose M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) :1651-1663
[8]   Leibniz algebras of nilindex n-3 with characteristic sequence (n-3, 2, 1) [J].
Camacho, L. M. ;
Canete, E. M. ;
Gomez, J. R. ;
Redjepov, Sh. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (04) :1832-1851
[9]   The classification of 4-dimensional Leibniz algebras [J].
Canete, Elisa M. ;
Khudoyberdiyev, Abror Kh. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) :273-288
[10]   Classification of solvable Leibniz algebras with null-filiform nilradical [J].
Casas, J. M. ;
Ladra, M. ;
Omirov, B. A. ;
Karimjanov, I. A. .
LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06) :758-774