Zero product preserving linear maps of CCR C*-algebras with Hausdorff spectrum

被引:14
作者
Leung, Chi-Wai [2 ]
Wong, Ngai-Ching [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Separating linear maps; Zero product preservers; Automatic continuity; Preserver problems; Continuous fields of Banach spaces and; C*-algebras; CCR; BANACH-ALGEBRAS; STAR-ALGEBRAS; ISOMORPHISMS; C'-ALGEBRAS; MAPPINGS;
D O I
10.1016/j.jmaa.2009.08.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we try to attack a conjecture of Araujo and Jarosz that every bijective linear map theta between C*-algebras, with both theta and its inverse theta(-1) preserving zero products, arises from an algebra isomorphism followed by a central multiplier. We show it is true for CCR C*-algebras with Hausdorff spectrum, and in general, some special C*-algebras associated to continuous fields of C*-algebras. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 19 条
[1]   IDEAL PERTURBATIONS OF ELEMENTS IN C-STAR-ALGEBRAS [J].
AKEMANN, CA ;
PEDERSEN, GK .
MATHEMATICA SCANDINAVICA, 1977, 41 (01) :117-139
[2]  
[Anonymous], 1998, MATH SURVEYS MONOGR
[3]  
[Anonymous], C ALGEBRAS
[4]   Biseparating maps between operator algebras [J].
Araujo, J ;
Jarosz, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (01) :48-55
[5]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[6]   Unbounded disjointness preserving linear functionals [J].
Brown, LG ;
Wong, NC .
MONATSHEFTE FUR MATHEMATIK, 2004, 141 (01) :21-32
[7]   C STAR-ALGEBRAS WITH HAUSDORFF SPECTRUM [J].
BUNCE, JW ;
DEDDENS, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :199-217
[8]   Mappings preserving zero products [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH ;
Wong, NC .
STUDIA MATHEMATICA, 2003, 155 (01) :77-94
[9]   Discontinuous homomorphisms from non-commutative Banach algebras [J].
Dales, HG ;
Runde, V .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :475-479
[10]   THE STRUCTURE OF ALGEBRAS OF OPERATOR FIELDS [J].
FELL, JMG .
ACTA MATHEMATICA, 1961, 106 (3-4) :233-280