Subject-wise empirical likelihood inference in partial linear models for longitudinal data

被引:3
作者
Qian, Lianfen [1 ,3 ]
Wang, Suojin [2 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Wenzhou Univ, Wenzhou, Zhejiang, Peoples R China
关键词
Confidence region; Empirical likelihood; Longitudinal data; Maximum empirical likelihood estimator; GENERALIZED ESTIMATING EQUATIONS; BINARY DATA;
D O I
10.1016/j.csda.2017.02.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In analyzing longitudinal data, within-subject correlations are a major factor that affects statistical efficiency. Working with a partially linear model for longitudinal data, a subject wise empirical likelihood based method that takes the within-subject correlations into consideration is proposed to estimate the model parameters. A nonparametric version of the Wilks Theorem for the limiting distribution of the empirical likelihood ratio, which relies on a kernel regression smoothing method to properly centered data, is derived. The estimation of the nonparametric baseline function is also considered. A simulation study and an application are reported to investigate the finite sample properties of the proposed method. The numerical results demonstrate the usefulness of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 15 条
[1]   A GENERALIZED ESTIMATING EQUATIONS APPROACH FOR SPATIALLY CORRELATED BINARY DATA - APPLICATIONS TO THE ANALYSIS OF NEUROIMAGING DATA [J].
ALBERT, PS ;
MCSHANE, LM .
BIOMETRICS, 1995, 51 (02) :627-638
[2]   SEMIPARAMETRIC GEE ANALYSIS IN PARTIALLY LINEAR SINGLE-INDEX MODELS FOR LONGITUDINAL DATA [J].
Chen, Jia ;
Li, Degui ;
Liang, Hua ;
Wang, Suojin .
ANNALS OF STATISTICS, 2015, 43 (04) :1682-1715
[3]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[4]   Semiparametric Estimation of Covariance Matrixes for Longitudinal Data [J].
Fan, Jianqing ;
Wu, Yichao .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1520-1533
[5]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[6]   A CAVEAT CONCERNING INDEPENDENCE ESTIMATING EQUATIONS WITH MULTIVARIATE BINARY DATA [J].
FITZMAURICE, GM .
BIOMETRICS, 1995, 51 (01) :309-317
[7]   Extended generalized estimating equations for clustered data [J].
Hall, DB ;
Severini, TA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) :1365-1375
[8]  
Liang H, 1999, ANN STAT, V27, P1519
[9]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[10]  
Owen A.B., 2001, EMPIRICAL LIKELIHOOD