An asymptotically periodic Schrodinger equation with indefinite linear part

被引:176
作者
Li, GB
Szulkin, A
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
semilinear Schrodinger equation; linking; asymptotically periodic;
D O I
10.1142/S0219199702000853
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Schrodinger equation -Deltau+V(x)u=f (x, u), where V is periodic and f asymptotically periodic in the x-variables, 0 is in a spectral gap of -Delta+V and f is either asymptotically linear or superlinear as \u\-->infinity. We show that this equation has a solution u is an element of H-1(R-N), unot equal0.
引用
收藏
页码:763 / 776
页数:14
相关论文
共 18 条
[1]   ON MULTIBUMP BOUND-STATES FOR CERTAIN SEMILINEAR ELLIPTIC-EQUATIONS [J].
ALAMA, S ;
LI, YY .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :983-1026
[2]  
[Anonymous], 1997, VARIATIONAL METHODS
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]   Use of Cereport™ (RMP-7) to increase delivery of carboplatin to gliomas:: Insight and parameters for intracarotid infusion via a single-lumen cannula [J].
Bartus, RT .
DRUG DELIVERY, 1999, 6 (01) :15-21
[5]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[6]  
CERAMI G, 1978, RENDICONTI ACCADEMIA, V112, P332
[7]  
COTIZELATI V, 1992, COMMUN PUR APPL MATH, V45, P1217
[8]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[9]  
Kryszewski W., 1998, Adv. Differ. Equ, V3, P441, DOI DOI 10.57262/ADE/1366399849
[10]  
Kuchment PA., 1993, Floquet theory for partial differential equations