Quantum coherence transfer between an optical cavity and mechanical resonators

被引:24
作者
Li, GuoYao [1 ]
Nie, WenJie [1 ]
Li, XiYun [1 ]
Li, MingCui [2 ]
Chen, AiXi [3 ]
Lan, YueHeng [4 ]
机构
[1] East China Jiaotong Univ, Dept Appl Phys, Nanchang 330013, Jiangxi, Peoples R China
[2] East China Jiaotong Univ, Dept Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
[3] Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Zhejiang, Peoples R China
[4] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 10期
基金
中国国家自然科学基金;
关键词
optomechanics; quantum coherence; system stability; MOVABLE MIRRORS; ENTANGLEMENT; MOTION;
D O I
10.1007/s11433-018-9413-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study highlights the theoretical investigation of quantum coherence in mechanical oscillators and its transfer between the cavity and mechanical modes of an optomechanical system comprising an optical cavity and two mechanical oscillators that, in this study, were simultaneously coupled to the optical cavity at different optomechanical coupling strengths. The quantum coherence transfer between the optical and mechanical modes is found to depend strongly on the relative magnitude of the two optomechanical couplings. The laser power, decay rates of the cavity and mechanical oscillators, environmental temperature, and frequency of the mechanical oscillator are observed to significantly influence the investigated quantum coherences. Moreover, quantum coherence generation in the optomechanical system is restricted by the system's stability condition, which helps sustain high and stable quantum coherence in the optomechanical system.
引用
收藏
页数:12
相关论文
共 75 条
[1]   Efficiency of heat engines coupled to nonequilibrium reservoirs [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2014, 106 (02)
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Localization and topology protected quantum coherence at the edge of hot matter [J].
Bahri, Yasaman ;
Vosk, Ronen ;
Altman, Ehud ;
Vishwanath, Ashvin .
NATURE COMMUNICATIONS, 2015, 6
[4]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[5]   Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity [J].
Bemani, F. ;
Motazedifard, Ali ;
Roknizadeh, R. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2017, 96 (02)
[6]   QUANTUM LANGEVIN EQUATION [J].
BENGURIA, R ;
KAC, M .
PHYSICAL REVIEW LETTERS, 1981, 46 (01) :1-4
[7]   Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror [J].
Bhattacharya, M. ;
Giscard, P. -L. ;
Meystre, P. .
PHYSICAL REVIEW A, 2008, 77 (01)
[8]   Emergence of coherence and the dynamics of quantum phase transitions [J].
Braun, Simon ;
Friesdorf, Mathis ;
Hodgman, Sean S. ;
Schreiber, Michael ;
Ronzheimer, Jens Philipp ;
Riera, Arnau ;
del Rey, Marco ;
Bloch, Immanuel ;
Eisert, Jens ;
Schneider, Ulrich .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (12) :3641-3646
[9]   Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit [J].
Buchmann, L. F. ;
Schreppler, S. ;
Kohler, J. ;
Spethmann, N. ;
Stamper-Kurn, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (03)
[10]   Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential [J].
Buchmann, L. F. ;
Zhang, L. ;
Chiruvelli, A. ;
Meystre, P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)