ALMOST GLOBAL EXISTENCE FOR THE KLEIN-GORDON EQUATION WITH THE KIRCHHOFF-TYPE NONLINEARITY

被引:0
作者
Han, Zheng [1 ]
Fang, Daoyuan [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Almost global existence; Klein-Gordon equation; Kirchhoff-type non-linearity; normal forms; LONG-TIME EXISTENCE; WELL-POSEDNESS;
D O I
10.3934/cpaa.2020287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an almost global existence result for the Klein-Gordon equation with the Kirchhoff-type nonlinearity on T-d with Cauchy data of small amplitude epsilon. We show a lower bound epsilon(-)(2N)(-2) for the existence time with any natural number N. The proof relies on the method of normal forms and induction. The structure of the nonlinearity is good enough that proceeds normal forms up to any order.
引用
收藏
页码:737 / 754
页数:18
相关论文
共 12 条
[1]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[2]   On the existence time for the Kirchhoff equation with periodic boundary conditions [J].
Baldi, Pietro ;
Haus, Emanuele .
NONLINEARITY, 2020, 33 (01) :196-223
[3]  
Bernstein S., 1940, Bull. Acad. Sci. URSS, S\'er. Math., V4, P17
[4]   Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds [J].
Delort, J. -M. ;
Szeftel, J. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) :1187-1218
[5]   ON LONG TIME EXISTENCE FOR SMALL SOLUTIONS OF SEMI-LINEAR KLEIN-GORDON EQUATIONS ON THE TORUS [J].
Delort, J. -M. .
JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 :161-194
[7]   Almost global existence for the semi-linear Klein-Gordon equation on the circle [J].
Fang, Daoyuan ;
Han, Zheng ;
Zhang, Qidi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) :4610-4634
[8]  
KIRCHHOFF G, 1876, VORLESUNGEN MATH PHY, pCH29
[9]   Global well-posedness of Kirchhoff systems [J].
Matsuyama, Tokio ;
Ruzhansky, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02) :220-240
[10]  
MEDEIROS LA, 1987, MAT APL COMPUT, V6, P257