Generalized projective synchronization between Lorenz system and Chen's system

被引:85
作者
Li, Guo-Hui [1 ]
机构
[1] Shanghai Univ, Dept Commun Engn, Shanghai 200072, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.11.073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of active backstepping design, this paper presents the generalized projective synchronization between two different chaotic systems: Lorenz system and Chen's system. The proposed method combines backstepping methods and active control without having to calculate the Lyapunov exponents and the eigenvalues of the Jacobian matrix, which makes it simple and convenient. Numerical simulations show that this method works very well. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1454 / 1458
页数:5
相关论文
共 10 条
  • [1] Synchronization of two Lorenz systems using active control
    Bai, EW
    Lonngren, KE
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (01) : 51 - 58
  • [2] Antiphase synchronism in chaotic systems
    Cao, LY
    Lai, YC
    [J]. PHYSICAL REVIEW E, 1998, 58 (01) : 382 - 386
  • [3] Backstepping control of discrete-time chaotic systems with application to the Henon system
    Lu, JG
    Wei, R
    Wang, XF
    Wang, ZQ
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (11): : 1359 - 1363
  • [4] Projective synchronization in three-dimensional chaotic systems
    Mainieri, R
    Rehacek, J
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (15) : 3042 - 3045
  • [5] SYNCHRONIZATION IN CHAOTIC SYSTEMS
    PECORA, LM
    CARROLL, TL
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (08) : 821 - 824
  • [6] Synchronizing chaotic systems using backstepping design
    Tan, XH
    Zhang, JY
    Yang, YR
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 37 - 45
  • [7] Adaptive synchronization of uncertain chaotic systems via backstepping design
    Wang, C
    Ge, SS
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (07) : 1199 - 1206
  • [8] Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems
    Wen, GL
    Xu, DL
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 71 - 77
  • [9] Generalized projective synchronization of a unified chaotic system
    Yan, JP
    Li, CP
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (04) : 1119 - 1124
  • [10] Controlling and tracking hyperchaotic Rossler system via active backstepping design
    Zhang, H
    Ma, XK
    Li, M
    Zou, JL
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (02) : 353 - 361