Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes

被引:25
作者
Kovacs, Krisztina [1 ,2 ]
Szakacs, George [2 ]
Zacchi, Guido [1 ]
机构
[1] Lund Univ, Dept Chem Engn, SE-22100 Lund, Sweden
[2] Budapest Univ Technol & Econ, Dept Appl Biotechnol & Food Sci, H-1111 Budapest, Hungary
关键词
Trichoderma atroviride; Trichoderma reesei; Steam-pretreated spruce; Enzymatic hydrolysis; Simultaneous saccharification and fermentation; Ethanol production; BETA-GLUCOSIDASE PRODUCTION; CELLULASE PRODUCTION; POLY(ETHYLENE GLYCOL); SO2; IMPREGNATION; MIXED CULTURE; ETHANOL; SOFTWOOD; SUBSTRATE; HEMICELLULASES; LIGNOCELLULOSE;
D O I
10.1016/j.procbio.2009.07.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to compare the performance of the enzymes produced by Trichoderma reesei Rut C30 and the good extracellular beta-glucosidase-producing mutant Trichoderma atroviride TUB F-1663 to that of commercial preparations in the enzymatic hydrolysis and the simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce (SPS). The concentrated TUB F-1663 enzyme was found to be the most efficient in the hydrolysis of washed SPS at 50 g/L water-insoluble solids (WIS) in terms of the glucose produced (18.5 g/L), even in comparison with commercial cellulases (14.1-16.7 g/L). The enzyme preparations were studied at low enzyme loadings (5 FPU/g WIS) in SSF to produce ethanol from SPS. The enzyme supernatant and whole fermentation broth of T. atroviride as well as the whole broth of T. reesei proved to be as efficient in SSF as the commercial cellulase mixtures (ethanol yields of 61-76% of the theoretical were achieved), while low ethanol yields (<40%) were obtained with the beta-glucosidase-deficient T. reesei supernatant. Therefore, it seems, that instead of using commercial cellulases, the TUB F-1663 enzymes and the whole broth of Rut C30 may be produced on-site, using a process stream as carbon source, and employed directly in the biomass-to-bioethanol process. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1323 / 1329
页数:7
相关论文
共 48 条
[1]   Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce [J].
Alkasrawi, M ;
Rudolf, A ;
Lidén, G ;
Zacchi, G .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (1-2) :279-286
[2]   CLONING AND AMPLIFICATION OF THE GENE ENCODING AN EXTRACELLULAR BETA-GLUCOSIDASE FROM TRICHODERMA-REESEI - EVIDENCE FOR IMPROVED RATES OF SACCHARIFICATION OF CELLULOSIC SUBSTRATES [J].
BARNETT, CC ;
BERKA, RM ;
FOWLER, T .
BIO-TECHNOLOGY, 1991, 9 (06) :562-567
[3]   MECHANISM OF ENZYMATIC CELLULOSE DEGRADATION - ISOLATION AND SOME PROPERTIES OF A BETA-GLUCOSIDASE FROM TRICHODERMA-VIRIDE [J].
BERGHEM, LER ;
PETTERSSON, LG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1974, 46 (02) :295-305
[4]   Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes [J].
Berlin, A ;
Gilkes, N ;
Kilburn, D ;
Bura, R ;
Markov, A ;
Skomarovsky, A ;
Okunev, O ;
Gusakov, A ;
Maximenko, V ;
Gregg, D ;
Sinitsyn, A ;
Saddler, J .
ENZYME AND MICROBIAL TECHNOLOGY, 2005, 37 (02) :175-184
[5]   Optimization of enzyme complexes for lignocellulose hydrolysis [J].
Berlin, Alex ;
Maximenko, Vera ;
Gilkes, Neil ;
Saddler, Jack .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 97 (02) :287-296
[6]   Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol [J].
Bollók, M ;
Réczey, K ;
Zacchi, G .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :69-80
[7]   Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose [J].
Borjesson, Johan ;
Engqvist, Martin ;
Sipos, Balint ;
Tjerneld, Folke .
ENZYME AND MICROBIAL TECHNOLOGY, 2007, 41 (1-2) :186-195
[8]   Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition [J].
Borjesson, Johan ;
Peterson, Ragna ;
Tjerneld, Folke .
ENZYME AND MICROBIAL TECHNOLOGY, 2007, 40 (04) :754-762
[9]   INFLUENCE OF BETA-GLUCOSIDASE ON THE FILTER-PAPER ACTIVITY AND HYDROLYSIS OF LIGNOCELLULOSIC SUBSTRATES [J].
BREUIL, C ;
CHAN, M ;
GILBERT, M ;
SADDLER, JN .
BIORESOURCE TECHNOLOGY, 1992, 39 (02) :139-142
[10]  
BREUIL C, 1990, APPL MICROBIOL BIOT, V34, P31