SCENE-BASED AUTOMATIC IMAGE ANNOTATION

被引:0
作者
Tariq, Amara [1 ]
Foroosh, Hassan [1 ]
机构
[1] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
Image annotation; Information extraction; Scene understanding; Context-based annotation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Image search and retrieval systems depend heavily on availability of descriptive textual annotations with images, to match them with textual queries of users. In most cases, such systems have to rely on users to provide tags or keywords with images. Users may add insufficient or noisy tags. A system to automatically generate descriptive tags for images can be extremely helpful for search and retrieval systems. Automatic image annotation has been explored widely in both image and text processing research communities. In this paper, we present a novel approach to tackle this problem by incorporating contextual information provided by scene analysis of image. Image can be represented by features which indicate type of scene shown in the image, instead of representing individual objects or local characteristics of that image. We have used such features to provide context in the process of predicting tags for images.
引用
收藏
页码:3047 / 3051
页数:5
相关论文
共 50 条
[41]   Automatic Image Annotation using Deep Learning Representations [J].
Murthy, Venkatesh N. ;
Maji, Subhransu ;
Manmatha, R. .
ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, :603-606
[42]   Automatic Image Annotation Exploiting Textual and Visual Saliency [J].
Gu, Yun ;
Xue, Haoyang ;
Yang, Jie ;
Jia, Zhenhong .
NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 :95-102
[43]   Automatic Image Annotation Using Synthesis of Complementary Features [J].
Sreekumar, K. ;
Anjusha, B. ;
Nair, Rahul R. .
2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, :294-298
[44]   Towards Automatic Image Annotation Supporting Document Understanding [J].
Markowska-Kaczmar, Urszula ;
Minda, Pawel ;
Ociepa, Krzysztof ;
Olszowy, Dariusz ;
Pawlikowski, Roman .
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PART I, 2011, 6678 :420-427
[45]   A sparse kernel relevance model for automatic image annotation [J].
Moran, Sean ;
Lavrenko, Victor .
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2014, 3 (04) :209-229
[46]   Automatic Image Annotation with Real World Noisy Data [J].
Tian, Feng ;
Shen, Xukun .
2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, :254-259
[47]   Automatic Image Annotation using Word Embedding Learning [J].
Chen, Qi ;
Yip, Andy M. ;
Tan, Chew Lim .
2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, :269-276
[48]   A Combined Hierarchical Model for Automatic Image Annotation and Retrieval [J].
Sumathi, T. ;
Hemalatha, M. .
2011 THIRD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2011, :135-139
[49]   Reliability and effectiveness of clickthrough data for automatic image annotation [J].
Tsikrika, Theodora ;
Diou, Christos ;
de Vries, Arjen P. ;
Delopoulos, Anastasios .
MULTIMEDIA TOOLS AND APPLICATIONS, 2011, 55 (01) :27-52
[50]   Automatic image annotation by combining generative and discriminant models [J].
Ji, Ping ;
Gao, Xianhe ;
Hu, Xueyou .
NEUROCOMPUTING, 2017, 236 :48-55