Strong systolic freedom of closed manifolds end of polyhedrons

被引:14
作者
Babenko, IK
机构
[1] Univ Montpellier 2, Dept Math Sci, UMR 5030 CNRS, F-34095 Montpellier 5, France
[2] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119899, Russia
关键词
D O I
10.5802/aif.1917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Systols of dimension k for a Riemannian manifold of dimension n were introduced by M. Berger in 1972. The problem of intersystolic freedom (or (k, n - k) - freedom) deals with the supremum of the product of two supplementary dimensional systols, say k and n - k, when metric of M runs in the class of metrics with unit volume. Intersystolic freedom means that this supremum is equal to infinity. A few partial results in this direction were recently obtained by M. Katz, A. Suciu and the author. In the article we present a general theorem about the strong intersystolic freedom of arbitrary Riemannian polyhedrons. This result implies in particular the intersystolic freedom for any closed manifold.
引用
收藏
页码:1259 / +
页数:27
相关论文
共 24 条
[1]  
[Anonymous], 1998, JBER DT MATH VEREIN
[2]   Systolic freedom of orientable manifolds [J].
Babenko, I ;
Katz, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (06) :787-809
[3]  
BABENKO I, 2000, RUSS MATH SURV, V55, P171
[4]   ASYMPTOTIC INVARIANTS OF SMOOTH MANIFOLDS [J].
BABENKO, IK .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 41 (01) :1-38
[5]  
Babenko IK, 1998, MATH RES LETT, V5, P461
[6]  
BERGER M, 1993, ASTERISQUE, P279
[7]  
Berger M., 1972, Ann. Sci. Ecole Norm. Sup., V5, P1
[8]  
Berger M., 1972, Ann. Sci. Ecole Norm. Sup., V5, P241
[9]  
Burago Y. D., 1988, Geometric Inequalities
[10]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407