MAIP: a web service for predicting blood-stage malaria inhibitors

被引:26
作者
Bosc, Nicolas [1 ]
Felix, Eloy [1 ]
Arcila, Ricardo [1 ]
Mendez, David [1 ]
Saunders, Martin R. [2 ]
Green, Darren V. S. [2 ]
Ochoada, Jason [3 ]
Shelat, Anang A. [3 ]
Martin, Eric J. [4 ]
Iyer, Preeti [5 ]
Engkvist, Ola [5 ]
Verras, Andreas [6 ]
Duffy, James [7 ]
Burrows, Jeremy [7 ]
Gardner, J. Mark F. [8 ]
Leach, Andrew R. [1 ]
机构
[1] European Bioinformat Inst EMBL EBI, Wellcome Genome Campus, Cambridge CB10 1SD, England
[2] GlaxoSmithKline, Dept Mol Design Data & Computat Sci, Gunnels Wood Rd, Stevenage SG1 2NY, Herts, England
[3] St Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, 262 Danny Thomas Pl, Memphis, TN 38105 USA
[4] Novartis Inst Biomed Res, 5300 Chiron Way, Emeryville, CA 94608 USA
[5] AstraZeneca, R&D, Discovery Sci, Hit Discovery, Gothenburg, Sweden
[6] Schrodinger Inc, 120 West 45th St, New York, NY 10036 USA
[7] Med Malaria Ventures Discovery, CH-1215 Geneva, Switzerland
[8] AMG Consultants Ltd, Discovery Pk House,Discovery Pk,Ramsgate Rd, Sandwich CT13 9ND, Kent, England
基金
比尔及梅琳达.盖茨基金会;
关键词
Malaria; Antimalarial drug discovery; QSAR; Classification modelling; Open-source software; Naive Bayes; Machine learning; Data fusion; APPLICABILITY DOMAIN; CONFORMAL PREDICTION; QSAR; MODELS;
D O I
10.1186/s13321-021-00487-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Malaria is a disease affecting hundreds of millions of people across the world, mainly in developing countries and especially in sub-Saharan Africa. It is the cause of hundreds of thousands of deaths each year and there is an ever-present need to identify and develop effective new therapies to tackle the disease and overcome increasing drug resistance. Here, we extend a previous study in which a number of partners collaborated to develop a consensus in silico model that can be used to identify novel molecules that may have antimalarial properties. The performance of machine learning methods generally improves with the number of data points available for training. One practical challenge in building large training sets is that the data are often proprietary and cannot be straightforwardly integrated. Here, this was addressed by sharing QSAR models, each built on a private data set. We describe the development of an open-source software platform for creating such models, a comprehensive evaluation of methods to create a single consensus model and a web platform called MAIP available at . MAIP is freely available for the wider community to make large-scale predictions of potential malaria inhibiting compounds. This project also highlights some of the practical challenges in reproducing published computational methods and the opportunities that open-source software can offer to the community.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic [J].
Blasco, Benjamin ;
Leroy, Didier ;
Fidock, David A. .
NATURE MEDICINE, 2017, 23 (08) :917-928
[2]   Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery [J].
Bosc, Nicolas ;
Atkinson, Francis ;
Felix, Eloy ;
Gaulton, Anna ;
Hersey, Anne ;
Leach, Andrew R. .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (1)
[3]   How Patients Take Malaria Treatment: A Systematic Review of the Literature on Adherence to Antimalarial Drugs [J].
Bruxvoort, Katia ;
Goodman, Catherine ;
Kachur, S. Patrick ;
Schellenberg, David .
PLOS ONE, 2014, 9 (01)
[4]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[5]  
Cortes-Ciriano I, 2019, ARXIV190803569CSQBIO
[6]   Chemical predictive modelling to improve compound quality [J].
Cumming, John G. ;
Davis, Andrew M. ;
Muresan, Sorel ;
Haeberlein, Markus ;
Chen, Hongming .
NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (12) :948-962
[7]  
Dassault Systemes BIOVIA, 2016, PIP PIL 2017 2 0 136
[8]   Quantifying the Number of Pregnancies at Risk of Malaria in 2007: A Demographic Study [J].
Dellicour, Stephanie ;
Tatem, Andrew J. ;
Guerra, Carlos A. ;
Snow, Robert W. ;
ter Kuile, Feiko O. .
PLOS MEDICINE, 2010, 7 (01)
[9]   Thousands of chemical starting points for antimalarial lead identification [J].
Gamo, Francisco-Javier ;
Sanz, Laura M. ;
Vidal, Jaume ;
de Cozar, Cristina ;
Alvarez, Emilio ;
Lavandera, Jose-Luis ;
Vanderwall, Dana E. ;
Green, Darren V. S. ;
Kumar, Vinod ;
Hasan, Samiul ;
Brown, James R. ;
Peishoff, Catherine E. ;
Cardon, Lon R. ;
Garcia-Bustos, Jose F. .
NATURE, 2010, 465 (7296) :305-U56
[10]   Chemical genetics of Plasmodium falciparum [J].
Guiguemde, W. Armand ;
Shelat, Anang A. ;
Bouck, David ;
Duffy, Sandra ;
Crowther, Gregory J. ;
Davis, Paul H. ;
Smithson, David C. ;
Connelly, Michele ;
Clark, Julie ;
Zhu, Fangyi ;
Jimenez-Diaz, Maria B. ;
Martinez, Maria S. ;
Wilson, Emily B. ;
Tripathi, Abhai K. ;
Gut, Jiri ;
Sharlow, Elizabeth R. ;
Bathurst, Ian ;
El Mazouni, Farah ;
Fowble, Joseph W. ;
Forquer, Isaac ;
McGinley, Paula L. ;
Castro, Steve ;
Angulo-Barturen, Inigo ;
Ferrer, Santiago ;
Rosenthal, Philip J. ;
DeRisi, Joseph L. ;
Sullivan, David J., Jr. ;
Lazo, John S. ;
Roos, David S. ;
Riscoe, Michael K. ;
Phillips, Margaret A. ;
Rathod, Pradipsinh K. ;
Van Voorhis, Wesley C. ;
Avery, Vicky M. ;
Guy, R. Kiplin .
NATURE, 2010, 465 (7296) :311-315