Atmospheric pressure plasma jets: an overview of devices and new directions

被引:419
作者
Winter, J. [1 ,2 ]
Brandenburg, R. [2 ]
Weltmann, K-D [2 ]
机构
[1] Ctr Innovat Competence plasmatis, D-17489 Greifswald, Germany
[2] INP Greifswald eV, Leibniz Inst Plasma Sci & Technol, D-17489 Greifswald, Germany
关键词
atmospheric pressure plasma jet; terms and definitions; classification schemes; plasma jet concepts; THERMAL PLASMA; ARGON; DISCHARGE; FILM; INACTIVATION; MICROPLASMAS; DYNAMICS; DIAMOND; LTE;
D O I
10.1088/0963-0252/24/6/064001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Atmospheric pressure plasma jets have a long history of more than 50 years. During this time their design and plasma generation mechanism has been developed and adapted to various fields of applications. This review aims at giving an overview of jet devices by starting with a brief history of their development. This is followed by an overview of commonly used terms and definitions as well as a survey of different classification schemes (e.g. geometry, excition frequency or specific energy input) described in literature. A selective update of new designs and novel research achievments on atmospheric pressure plasma jets published in 2012 or later shows the impressive variety and rapid development of the field. Finally, a brief outlook on the future trends and directions is given.
引用
收藏
页数:19
相关论文
共 124 条
[31]   The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array [J].
Hu, J. T. ;
Liu, X. Y. ;
Liu, J. H. ;
Xiong, Z. L. ;
Liu, D. W. ;
Lu, X. P. ;
Iza, F. ;
Kong, M. G. .
PHYSICS OF PLASMAS, 2012, 19 (06)
[32]   The growth of organosilicon film using a hexamethyldisilazane/oxygen atmospheric pressure plasma jet [J].
Huang, Chun ;
Wu, Shin-Yi ;
Tsai, Ching-Yuan ;
Liu, Wei-Ting .
THIN SOLID FILMS, 2013, 529 :292-295
[33]  
Hubner S, 2014, J PHYS D, V47, P43200
[34]   An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample [J].
Ichiki, T ;
Koidesawa, T ;
Horiike, Y .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (04) :S16-S20
[35]   Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate [J].
Iseni, S. ;
Zhang, S. ;
van Gessel, A. F. H. ;
Hofmann, S. ;
van Ham, B. T. J. ;
Reuter, S. ;
Weltmann, K-D ;
Bruggeman, P. J. .
NEW JOURNAL OF PHYSICS, 2014, 16
[36]   Microplasmas: Sources, particle kinetics, and biomedical applications [J].
Iza, Felipe ;
Kim, Gon Jun ;
Lee, Seung Min ;
Lee, Jae Koo ;
Walsh, James L. ;
Zhang, Yuantao T. ;
Kong, Michael G. .
PLASMA PROCESSES AND POLYMERS, 2008, 5 (04) :322-344
[37]   The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air [J].
Janda, Mario ;
Machala, Zdenko ;
Niklova, Adriana ;
Martisovits, Viktor .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (04)
[38]   The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet [J].
Jogi, Indrek ;
Talviste, Rasmus ;
Raud, Jueri ;
Piip, Kaarel ;
Paris, Peeter .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (41)
[39]   The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations [J].
Judee, F. ;
Wattieaux, G. ;
Merbahi, N. ;
Mansour, M. ;
Castanie-Cornet, M. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (40)
[40]   Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma [J].
Kim, Dong-Wook ;
Kim, Tae-Hee ;
Park, Hyun-Woo ;
Park, Dong-Wha .
APPLIED SURFACE SCIENCE, 2011, 257 (12) :5375-5379