Global Robustness with q-Step Deay for Max-Plus Linear Systems

被引:0
作者
Yin, Yingxuan [1 ]
Tao, Yuegang [1 ]
Wang, Cailu [2 ]
Tan, Jianguo [3 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
[2] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[3] Handan Inst Environm Protect, Handan 056001, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 04期
基金
中国国家自然科学基金;
关键词
Global robustness; globally robust with q-step delay; max-plus linear system; variablel element; graph method;
D O I
10.1016/j.ifacol.2021.04.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the global robustness of max-plus linear systems and investigates the global robustness with q-step delay, which requires the states keep unchanged under the bounded parameter perturbations after finite number of activities. For a class of stable maxplus linear systems, the variable elements with respect to the global robustness with q-step delay are found out under arbitrary initial states based on a graph method. A numerical example and its simulation are presented to illustrate the results. Copyright (C) 2020 The Authors.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 27 条
  • [1] Computational techniques for reachability analysis of Max-Plus-Linear systems
    Adzkiya, Dieky
    De Schutter, Bart
    Abate, Alessandro
    [J]. AUTOMATICA, 2015, 53 : 293 - 302
  • [2] [Anonymous], 1984, Graphs and Algorithms
  • [3] Baccelli F., 1992, Synchronization and Linearity: An Algebra for Discrete Event Systems
  • [4] Butkovic P, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84996-299-5
  • [5] Cohen G., 1984, Proceedings of the 23rd IEEE Conference on Decision and Control (Cat. No. 84CH2093-3), P539
  • [6] A LINEAR-SYSTEM-THEORETIC VIEW OF DISCRETE-EVENT PROCESSES AND ITS USE FOR PERFORMANCE EVALUATION IN MANUFACTURING
    COHEN, G
    DUBOIS, D
    QUADRAT, JP
    VIOT, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) : 210 - 220
  • [7] Cuninghame-Green R. A., 1979, Lecture Notes in Economics and Mathematical Systems, V166
  • [8] Goncalves V. M., 2012, IFAC P, V45, P91
  • [9] On the Steady-State Control of Timed Event Graphs With Firing Date Constraints
    Goncalves, Vinicius Mariano
    Maia, Carlos Andrey
    Hardouin, Laurent
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (08) : 2187 - 2202
  • [10] Robust MPL scheduling considering the number of in-process jobs
    Goto, Hiroyuki
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (4-5) : 603 - 607