CO2-converting enzymes for sustainable biotechnology: from mechanisms to application

被引:31
作者
Bernhardsgruetter, Iria [1 ]
Stoffel, Gabriele M. M. [1 ]
Miller, Tarryn E. [1 ]
Erb, Tobias J. [1 ,2 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Biochem & Synthet Metab, D-35043 Marburg, Germany
[2] Max Planck Inst Terr Microbiol, Ctr Synthet Microbiol, D-35043 Marburg, Germany
基金
欧洲研究理事会;
关键词
CROTONYL-COA CARBOXYLASE/REDUCTASE; BETA-SUBUNIT; FIXATION; RUBISCO; CARBON; SELECTION;
D O I
10.1016/j.copbio.2021.01.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To realize a circular, carbon-neutral economy, it will become important to utilize the greenhouse gas CO2 as a sustainable carbon source. Carboxylases, the enzymes that capture and convert gaseous CO2 are the prime candidates to pave the way towards realizing this vision of a CO2-based bio-economy. In the last couple of years, the interest in using and engineering carboxylases has been steadily growing. Here, we discuss how basic research on the mechanism of CO2 binding and activation by carboxylases opened the way to develop new-to-nature CO2-fixing enzymes that found application in the development of synthetic CO2-fixation pathways and their further realization in vitro and in vivo. These pioneering efforts in the field pave the way to realize a diverse CO2-fixation biochemistry that can find application in biocatalysis, biotechnology, and artificial photosynthesis.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 56 条
[1]   Applications of cyanobacteria in biotechnology [J].
Abed, R. M. M. ;
Dobretsov, S. ;
Sudesh, K. .
JOURNAL OF APPLIED MICROBIOLOGY, 2009, 106 (01) :1-12
[2]  
Alper Erdogan, 2017, Petroleum, V3, P109, DOI 10.1016/j.petlm.2016.11.003
[3]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[4]   Crystal Structures and Mutational Analyses of Acyl-CoA Carboxylase β Subunit of Streptomyces coelicolor [J].
Arabolaza, Ana ;
Shillito, Mary Elizabeth ;
Lin, Ting-Wan ;
Diacovich, Lautaro ;
Melgar, Melrose ;
Pham, Huy ;
Amick, Deborah ;
Gramajo, Hugo ;
Tsai, Shiou-Chuan .
BIOCHEMISTRY, 2010, 49 (34) :7367-7376
[5]   The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters [J].
Bar-Even, Arren ;
Noor, Elad ;
Savir, Yonatan ;
Liebermeister, Wolfram ;
Davidi, Dan ;
Tawfik, Dan S. ;
Milo, Ron .
BIOCHEMISTRY, 2011, 50 (21) :4402-4410
[6]   Awakening the Sleeping Carboxylase Function of Enzymes: Engineering the Natural CO2-Binding Potential of Reductases [J].
Bernhardsgruetter, Iria ;
Schell, Kristina ;
Peter, Dominik M. ;
Borjian, Farshad ;
Adrian Saez, David ;
Vohringer-Martinez, Esteban ;
Erb, Tobias J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (25) :9778-9782
[7]   The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite [J].
Bernhardsgruetter, Iria ;
Voegeli, Bastian ;
Wagner, Tristan ;
Peter, Dominik M. ;
Cortina, Nina Socorro ;
Kahnt, Joerg ;
Bange, Gert ;
Engilberge, Sylvain ;
Girard, Eric ;
Riobe, Francois ;
Maury, Olivier ;
Shima, Seigo ;
Zarzycki, Jan ;
Erb, Tobias J. .
NATURE CHEMICAL BIOLOGY, 2018, 14 (12) :1127-+
[8]   ATP-dependent enolization of acetone by acetone carboxylase from Rhodobacter capsulatus [J].
Boyd, JM ;
Ensign, SA .
BIOCHEMISTRY, 2005, 44 (23) :8543-8553
[9]   Mechanism of Rubisco: The carbamate as general base [J].
Cleland, WW ;
Andrews, TJ ;
Gutteridge, S ;
Hartman, FC ;
Lorimer, GH .
CHEMICAL REVIEWS, 1998, 98 (02) :549-561
[10]   How does an enzyme recognize CO2? [J].
Cotelesage, Julien J. H. ;
Puttick, Jennifer ;
Goldie, Hughes ;
Rajabi, Babak ;
Novakovski, Brian ;
Delbaere, Louis T. J. .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2007, 39 (06) :1204-1210