Biological evolution model with conditional mutation rates

被引:7
作者
Saakian, David B. [1 ,2 ]
Ghazaryan, Makar [3 ,4 ]
Bratus, Alexander [5 ,6 ]
Hu, Chin-Kun [1 ,7 ,8 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] AI Alikhanygn Natl Sci Lab, Yerevan Phys Inst Fdn, Alikhanian Bros St 2, Yerevan 375036, Armenia
[3] State Engn Univ Armenia, Teiyan St 105, Yerevan 375036, Armenia
[4] Yerevan State Univ, Alek Manougian 1, Yerevan 375036, Armenia
[5] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
[6] Moscow State Univ Railway Engn, Dept Appl Math, Moscow 127994, Russia
[7] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Hsinchu 30013, Taiwan
[8] Univ Shanghai Sci & Technol, Sch Business, Shanghai 200093, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
Crow-Kimura model; Modulated mutation rates; Complex system; SELECTION; BEHAVIOR;
D O I
10.1016/j.physa.2017.01.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an evolution model, in which the mutation rates depend on the structure of population: the mutation rates from lower populated sequences to higher populated sequences are reduced. We have applied the Hamilton-Jacobi equation method to solve the model and calculate the mean fitness. We have found that the modulated mutation rates, directed to increase the mean fitness. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 47 条
[31]   The rich phase structure of a mutator model [J].
Saakian, David B. ;
Yakushkina, Tatiana ;
Hu, Chin-Kun .
SCIENTIFIC REPORTS, 2016, 6
[32]   Dynamics of the Eigen and the Crow-Kimura models for molecular evolution [J].
Saakian, David B. ;
Rozanova, Olga ;
Akmetzhanov, Andrei .
PHYSICAL REVIEW E, 2008, 78 (04)
[33]   Exact solution of the Eigen model with general fitness functions and degradation rates [J].
Saakian, DB ;
Hu, CK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) :4935-4939
[34]   Solvable biological evolution model with a parallel mutation-selection scheme [J].
Saakian, DB ;
Hu, CK .
PHYSICAL REVIEW E, 2004, 69 (04) :8-1
[35]   Evolution equation of phenotype distribution: General formulation and application to error catastrophe [J].
Sato, Katsuhiko ;
Kaneko, Kunihiko .
PHYSICAL REVIEW E, 2007, 75 (06)
[36]  
SCHUSTER P, 1988, B MATH BIOL, V50, P635, DOI 10.1016/S0092-8240(88)80059-4
[37]   Asymmetric Context-Dependent Mutation Patterns Revealed through Mutation-Accumulation Experiments [J].
Sung, Way ;
Ackerman, Matthew S. ;
Gout, Jean-Francois ;
Miller, Samuel F. ;
Williams, Emily ;
Foster, Patricia L. ;
Lynch, Michael .
MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (07) :1672-1683
[38]   MODEL STUDIES ON RNA REPLICATION .2. SELF-REPLICATION WITH ERRORS - A MODEL FOR POLYNUCLEOTIDE REPLICATION [J].
SWETINA, J ;
SCHUSTER, P .
BIOPHYSICAL CHEMISTRY, 1982, 16 (04) :329-345
[39]   Systems biology of cancer: entropy, disorder, and selection-driven evolution to independence, invasion and "swarm intelligence" [J].
Tarabichi, M. ;
Antoniou, A. ;
Saiselet, M. ;
Pita, J. M. ;
Andry, G. ;
Dumont, J. E. ;
Detours, V. ;
Maenhaut, C. .
CANCER AND METASTASIS REVIEWS, 2013, 32 (3-4) :403-421
[40]   ERROR THRESHOLDS FOR MOLECULAR QUASI-SPECIES AS PHASE-TRANSITIONS - FROM SIMPLE LANDSCAPES TO SPIN-GLASS MODELS [J].
TARAZONA, P .
PHYSICAL REVIEW A, 1992, 45 (08) :6038-6050