Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus

被引:48
作者
Moncla, Louise H. [1 ,2 ]
Zhong, Gongxun [1 ]
Nelson, Chase W. [3 ]
Dinis, Jorge M. [1 ,2 ]
Mutschler, James [1 ,2 ]
Hughes, Austin L. [3 ]
Watanabe, Tokiko [1 ,4 ]
Kawaoka, Yoshihiro [1 ,4 ]
Friedrich, Thomas C. [1 ,2 ]
机构
[1] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Madison, WI 53706 USA
[2] Wisconsin Natl Primate Res Ctr, Madison, WI 53715 USA
[3] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA
[4] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol,Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan
关键词
MUTATION-RATES; RECEPTOR SPECIFICITY; NATURAL-SELECTION; A VIRUS; HEMAGGLUTININ; TRANSMISSION; INFECTION; H1N1; VIRULENCE; ORIGIN;
D O I
10.1016/j.chom.2016.01.011
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose'' bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 48 条
[1]  
[Anonymous], CELL HOST MICROBE, V16, P691
[2]   Kinetics of influenza A virus infection in humans [J].
Baccam, Prasith ;
Beauchemin, Catherine ;
Macken, Catherine A. ;
Hayden, Frederick G. ;
Perelson, Alan S. .
JOURNAL OF VIROLOGY, 2006, 80 (15) :7590-7599
[3]   High Genetic Diversity and Adaptive Potential of Two Simian Hemorrhagic Fever Viruses in a Wild Primate Population [J].
Bailey, Adam L. ;
Lauck, Michael ;
Weiler, Andrea ;
Sibley, Samuel D. ;
Dinis, Jorge M. ;
Bergman, Zachary ;
Nelson, Chase W. ;
Correll, Michael ;
Gleicher, Michael ;
Hyeroba, David ;
Tumukunde, Alex ;
Weny, Geoffrey ;
Chapman, Colin ;
Kuhn, Jens H. ;
Hughes, Austin L. ;
Friedrich, Thomas C. ;
Goldberg, Tony L. ;
O'Connor, David H. .
PLOS ONE, 2014, 9 (03)
[4]   Hepatitis C Virus Envelope Glycoprotein Fitness Defines Virus Population Composition following Transmission to a New Host [J].
Brown, Richard J. P. ;
Hudson, Natalia ;
Wilson, Garrick ;
Rehman, Shafiq Ur ;
Jabbari, Sara ;
Hu, Ke ;
Tarr, Alexander W. ;
Borrow, Persephone ;
Joyce, Michael ;
Lewis, Jamie ;
Zhu, Lin Fu ;
Law, Mansun ;
Kneteman, Norman ;
Tyrrell, D. Lorne ;
McKeating, Jane A. ;
Ball, Jonathan K. .
JOURNAL OF VIROLOGY, 2012, 86 (22) :11956-11966
[5]   Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin [J].
Chandrasekaran, Aarthi ;
Srinivasan, Aravind ;
Raman, Rahul ;
Viswanathan, Karthik ;
Raguram, S. ;
Tumpey, Terrence M. ;
Sasisekharan, V. ;
Sasisekharan, Ram .
NATURE BIOTECHNOLOGY, 2008, 26 (01) :107-113
[6]   Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses [J].
de Vries, Robert P. ;
Zhu, Xueyong ;
McBride, Ryan ;
Rigter, Alan ;
Hanson, Anthony ;
Zhong, Gongxun ;
Hatta, Masato ;
Xu, Rui ;
Yu, Wenli ;
Kawaoka, Yoshihiro ;
de Haan, Cornelis A. M. ;
Wilson, Ian A. ;
Paulson, James C. .
JOURNAL OF VIROLOGY, 2014, 88 (01) :768-773
[7]   Mutation rates among RNA viruses [J].
Drake, JW ;
Holland, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13910-13913
[8]   The evolution of human immunodeficiency virus type-1 (HIV-1) envelope molecular properties and coreceptor use at all stages of infection in an HIV-1 donor-recipient pair [J].
Edo-Matas, Diana ;
Rachinger, Andrea ;
Setiawan, Laurentia C. ;
Boeser-Nunnink, Brigitte D. ;
van 't Wout, Angelique B. ;
Lemey, Philippe ;
Schuitemaker, Hanneke .
VIROLOGY, 2012, 422 (01) :70-80
[9]  
Hamilton MB., 2012, Population Genetics
[10]   Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China [J].
He, JF ;
Peng, GW ;
Min, J ;
Yu, DW ;
Liang, WJ ;
Zhang, SY ;
Xu, RH ;
Zheng, HY ;
Wu, XW ;
Xu, J ;
Wang, ZH ;
Fang, L ;
Zhang, X ;
Li, H ;
Yan, XG ;
Lu, JH ;
Hu, ZH ;
Huang, JC ;
Wan, ZY ;
Hou, JL ;
Lin, JY ;
Song, HD ;
Wang, SY ;
Zhou, XJ ;
Zhang, GW ;
Gu, BW ;
Zheng, HJ ;
Zhang, XL ;
He, M ;
Zheng, K ;
Wang, BF ;
Fu, G ;
Wang, XN ;
Chen, SJ ;
Chen, Z ;
Hao, P ;
Tang, H ;
Ren, SX ;
Zhong, Y ;
Guo, ZM ;
Liu, Q ;
Miao, YG ;
Kong, XY ;
He, WZ ;
Li, YX ;
Wu, CI ;
Zhao, GP ;
Chiu, RWK ;
Chim, SSC ;
Tong, YK .
SCIENCE, 2004, 303 (5664) :1666-1669