Enabling Situational Awareness in Millimeter Wave Massive MIMO Systems

被引:83
作者
Mendrzik, Rico [1 ,2 ]
Meyer, Florian [2 ]
Bauch, Gerhard [1 ]
Win, Moe Z. [3 ]
机构
[1] Hamburg Univ Technol, INT, D-21073 Hamburg, Germany
[2] MIT, Wireless Informat & Network Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Lab Informat & Decis Syst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
奥地利科学基金会;
关键词
Millimeter wave; MIMO; positioning; synchronization; mapping; SIMULTANEOUS LOCALIZATION; DISTRIBUTED LOCALIZATION; ORIENTATION ESTIMATION; NETWORK LOCALIZATION; SCALABLE ALGORITHM; SELF-LOCALIZATION; TRACKING; 5G; SYNCHRONIZATION; PROPAGATION;
D O I
10.1109/JSTSP.2019.2933142
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Situational awareness in wireless networks refers to the availability of position information on transmitters and receivers as well as information on their propagation environments to aid wireless communications. In millimeter wave massive multiple-input multiple-output communication systems, situational awareness can significantly improve the quality and robustness of communications. In this paper, we establish a model that describes the statistical dependencies between channel state information and the position, orientation, and clock offset of a user equipment along with the locations of features in the propagation environment. Based on this model, we introduce COMPAS (Concurrent Mapping, Positioning, And Synchronization); an inference engine that can provide accurate and reliable situational awareness in millimeter wave massive multiple-input multiple-output communication systems. Numerical results show that COMPAS is able to infer the positions of an unknown and time-varying number of features in the propagation environment and, at the same time, estimate the position, orientation, and clock offset of a user equipment.
引用
收藏
页码:1196 / 1211
页数:16
相关论文
共 65 条
[1]   Error Bounds for Uplink and Downlink 3D Localization in 5G Millimeter Wave Systems [J].
Abu-Shaban, Zohair ;
Zhou, Xiangyun ;
Abhayapala, Thushara ;
Seco-Granados, Gonzalo ;
Wymeersch, Henk .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (08) :4939-4954
[2]   A Survey on the Impact of Multipath on Wideband Time-of-Arrival-Based Localization [J].
Aditya, Sundar ;
Molisch, Andreas F. ;
Behairy, Hatim Mohammed .
PROCEEDINGS OF THE IEEE, 2018, 106 (07) :1183-1203
[3]  
Alfredsson AF, 2018, 2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), P15, DOI 10.1109/PHOSST.2018.8456661
[4]  
[Anonymous], 2018, ACM SIGGRAPH 2018 AP
[5]  
[Anonymous], 2017, PROC IEEE 9 LATIN AM
[6]  
[Anonymous], 2018, EURASIP J ADV SIGNAL
[7]   Crowd-Based Learning of Spatial Fields for the Internet of Things From harvesting of data to inference [J].
Arias-de-Reyna, Eva ;
Closas, Pau ;
Dardari, Davide ;
Djuric, Petar M. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) :130-139
[8]   Position-Aided mm-Wave Beam Training Under NLOS Conditions [J].
Aviles, Juan C. ;
Kouki, Ammar .
IEEE ACCESS, 2016, 4 :8703-8714
[9]  
Bar-Shalom Y., 2011, A Handbook of Algorithms
[10]   A Mathematical Model for Wideband Ranging [J].
Bartoletti, Stefania ;
Dai, Wenhan ;
Conti, Andrea ;
Win, Moe Z. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (02) :216-228