Transforming growth factor beta (TGF-beta) induces G(1) arrest in susceptible cells by multiple mechanisms that inhibit the G(1) cyclin-dependent kinases (Cdks), including Cdk2, Cdk4, and Cdk6. TGF-beta treatment of early passage finite lifespan human mammary epithelial cells (HMECs) led to an accumulation of p271(Kipl) in cyclin E1-Cdk2 complexes and kinase inhibition. The requirement for p27 in the G(1) arrest by TGF-beta was assessed by transfection of antisense p27 (ASp27) oligonucleotides into TGF-beta-treated HMECs. Despite a reduction in total and cyclin E-Cdk2 bound p27 after ASp27 transfection, HMECs remained arrested in the G(1) phase. Maintenance of the G(1) arrest was accompanied by increased association of the Cdk inhibitor p21(WAF-1/Cip-1) and the retinoblastoma family member p130(Rb2) in cyclin E1-Cdk2 complexes along with kinase inhibition. In contrast to the findings in HMECs, p27 was essential for G(1) arrest by TGF-beta in two tumor-derived lines. ASp27 transfection into two TGF-beta-responsive, cancer-derived lines was not associated with increased compensatory binding of p21 and p130 to cyclin E1-Cdk2, and these cell lines failed to maintain G(1) arrest despite the continued presence of TGF-beta. Progressive cell cycle deregulation leading to impaired checkpoint controls during malignant tumor progression may alter the role of p27 from a redundant to an essential inhibitor of G(1)-to-S phase progression.
引用
收藏
页码:41686 / 41692
页数:7
相关论文
共 47 条
[1]
Amati B., 1998, FRONT BIOSCI, V3, pd250, DOI DOI 10.2741/A239