How irreversible are steady-state trajectories of a trapped active particle?

被引:22
作者
Dabelow, Lennart [1 ]
Bo, Stefano [2 ]
Eichhorn, Ralf [3 ,4 ]
机构
[1] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[4] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
active matter; Brownian motion; stochastic thermodynamics; stochastic particle dynamics; FLUCTUATION-DISSIPATION; SYSTEMS; THERMODYNAMICS; TEMPERATURE; DYNAMICS; COLLOIDS;
D O I
10.1088/1742-5468/abe6fd
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The defining feature of active particles is that they constantly propel themselves by locally converting chemical energy into directed motion. This active self-propulsion prevents them from equilibrating with their thermal environment (e.g. an aqueous solution), thus keeping them permanently out of equilibrium. Nevertheless, the spatial dynamics of active particles might share certain equilibrium features, in particular in the steady state. We here focus on the time-reversal symmetry of individual spatial trajectories as a distinct equilibrium characteristic. We investigate to what extent the steady-state trajectories of a trapped active particle obey or break this time-reversal symmetry. Within the framework of active Ornstein-Uhlenbeck particles we find that the steady-state trajectories in a harmonic potential fulfill path-wise time-reversal symmetry exactly, while this symmetry is typically broken in anharmonic potentials.
引用
收藏
页数:29
相关论文
共 79 条
[1]   Active colloids [J].
Aranson, I. S. .
PHYSICS-USPEKHI, 2013, 56 (01) :79-92
[2]   Experimental realization of a minimal microscopic heat engine [J].
Argun, Aykut ;
Soni, Jalpa ;
Dabelow, Lennart ;
Bo, Stefano ;
Pesce, Giuseppe ;
Eichhorn, Ralf ;
Volpe, Giovanni .
PHYSICAL REVIEW E, 2017, 96 (05)
[3]   Non-Boltzmann stationary distributions and nonequilibrium relations in active baths [J].
Argun, Aykut ;
Moradi, Ali-Reza ;
Pince, Ercag ;
Bagci, Gokhan Baris ;
Imparato, Alberto ;
Volpe, Giovanni .
PHYSICAL REVIEW E, 2016, 94 (06)
[4]   Active Particles in Complex and Crowded Environments [J].
Bechinger, Clemens ;
Di Leonardo, Roberto ;
Loewen, Hartmut ;
Reichhardt, Charles ;
Volpe, Giorgio ;
Volpe, Giovanni .
REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
[5]  
Berthier L, 2013, NAT PHYS, V9, P310, DOI [10.1038/NPHYS2592, 10.1038/nphys2592]
[6]   Active Ornstein-Uhlenbeck particles [J].
Bonilla, L. L. .
PHYSICAL REVIEW E, 2019, 100 (02)
[7]   The entropy production of Ornstein-Uhlenbeck active particles: a path integral method for correlations [J].
Caprini, Lorenzo ;
Marconi, Umberto Marini Bettolo ;
Puglisi, Andrea ;
Vulpiani, Angelo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
[8]   Active escape dynamics: The effect of persistence on barrier crossing [J].
Caprini, Lorenzo ;
Marconi, Umberto Marini Bettolo ;
Puglisi, Andrea ;
Vulpiani, Angelo .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (02)
[9]   Linear response and correlation of a self-propelled particle in the presence of external fields [J].
Caprini, Lorenzo ;
Marconi, Umberto Marini Bettolo ;
Vulpiani, Angelo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[10]   Motility-Induced Phase Separation [J].
Cates, Michael E. ;
Tailleur, Julien .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :219-244