Data-driven Reconstruction of Gravitationally Lensed Galaxies Using Recurrent Inference Machines

被引:45
作者
Morningstar, Warren R. [1 ,2 ]
Levasseur, Laurence Perreault [3 ]
Hezaveh, Yashar D. [3 ]
Blandford, Roger [1 ,2 ]
Marshall, Phil [1 ,2 ]
Putzky, Patrick [4 ]
Rueter, Thomas D. [2 ,5 ]
Wechsler, Risa [1 ,2 ]
Welling, Max [4 ]
机构
[1] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, 452 Lomita Mall, Stanford, CA 94305 USA
[3] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[4] Univ Amsterdam, Informat Inst, NL-1090 GH Amsterdam, Netherlands
[5] Stanford Univ, SLAC Natl Accelerator Lab, 452 Lomita Mall, Stanford, CA 94305 USA
关键词
Convolutional neural networks; Strong gravitational lensing; Neural networks; MASSES;
D O I
10.3847/1538-4357/ab35d7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a machine-learning method for the reconstruction of the undistorted images of background sources in strongly lensed systems. This method treats the source as a pixelated image and utilizes the recurrent inference machine to iteratively reconstruct the background source given a lens model. Our architecture learns to maximize the likelihood of the model parameters (source pixels) given the data using the physical forward model (ray-tracing simulations) while implicitly learning the prior of the source structure from the training data. This results in better performance compared to linear inversion methods, where the prior information is limited to the two-point covariance of the source pixels approximated with a Gaussian form, and often specified in a relatively arbitrary manner. We combine our source reconstruction network with a convolutional neural network that predicts the parameters of the mass distribution in the lensing galaxies directly from telescope images, allowing a fully automated reconstruction of the background source images and the foreground mass distribution.
引用
收藏
页数:11
相关论文
共 41 条
[1]  
Andrychowicz M, 2016, ADV NEUR IN, V29
[2]  
[Anonymous], APJ
[3]  
[Anonymous], 2016, ASTROPHYS J, DOI DOI 10.3847/0004-637X/823/2/91
[4]  
[Anonymous], 2018, MNRAS
[5]  
[Anonymous], P IEEE C COMP VIS PA
[6]  
[Anonymous], 2018, APJ, DOI DOI 10.3847/1538-4357/AAAE6A
[7]  
[Anonymous], MNRAS
[8]   lenstronomy: Multi-purpose gravitational lens modelling software package [J].
Birrer, Simon ;
Amara, Adam .
PHYSICS OF THE DARK UNIVERSE, 2018, 22 :189-201
[9]   GRAVITATIONAL LENS MODELING WITH BASIS SETS [J].
Birrer, Simon ;
Amara, Adam ;
Refregier, Alexandre .
ASTROPHYSICAL JOURNAL, 2015, 813 (02)
[10]   COSMOLOGICAL APPLICATIONS OF GRAVITATIONAL LENSING [J].
BLANDFORD, RD ;
NARAYAN, R .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1992, 30 :311-358