Probabilistic principal component subspaces: A hierarchical finite mixture model for data visualization

被引:49
作者
Wang, Y [1 ]
Luo, L
Freedman, MT
Kung, SY
机构
[1] Catholic Univ Amer, Dept Elect Engn & Comp Sci, Washington, DC 20064 USA
[2] Georgetown Univ, Dept Radiol, Washington, DC 20007 USA
[3] Georgetown Univ, Lombardi Canc Ctr, Washington, DC 20007 USA
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 03期
基金
美国国家卫生研究院;
关键词
computer-aided diagnosis; data visualization; hierarchical mixture distribution; information theoretic criteria; principal component neural network; soft clustering;
D O I
10.1109/72.846734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual exploration has proven to be a powerful tool for multivariate data mining and knowledge discovery, Most visualization algorithms aim to find a projection from the data space down to a visually perceivable rendering space, To reveal all of the interesting aspects of multimodal data sets living in a high-dimensional space, a hierarchical visualization algorithm is introduced which allows the complete data set to be visualized at the top level, with clusters and subclusters of data points visualized at deeper levels, The methods involve hierarchical use of standard finite normal mixtures and probabilistic principal component projections, whose parameters are estimated using the expectation-maximization and principal component neural networks under the information theoretic criteria, We demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method to the visual explanation in computer-aided diagnosis for breast cancer detection from digital mammograms.
引用
收藏
页码:625 / 636
页数:12
相关论文
共 25 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   A hierarchical latent variable model for data visualization [J].
Bishop, CM ;
Tipping, ME .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :281-293
[3]  
Bracewell R. N., 1995, Two-Dimensional Imaging
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   Separability-based multiscale basis selection and feature extraction for signal and image classification [J].
Etemad, K ;
Chellappa, R .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (10) :1453-1465
[6]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[7]  
GRAY RM, 1986, RANDOM PROCESSES MAT
[8]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, V2nd ed
[9]   Modeling the manifolds of images of handwritten digits [J].
Hinton, GE ;
Dayan, P ;
Revow, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01) :65-74
[10]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630