Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy

被引:36
作者
Lang, N. [1 ]
Macherius, U. [1 ]
Wiese, M. [1 ]
Zimmermann, H. [1 ]
Roepcke, J. [1 ]
van Helden, J. H. [1 ]
机构
[1] Leibniz Inst Plasma Sci & Technol, F Hausdorff Str 2, D-17489 Greifswald, Germany
关键词
DIODE-LASER; SPECTROMETER; NOISE;
D O I
10.1364/OE.24.00A536
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 x 10(-9) cm(-1) Hz(-1/2) for a spectral scan of CH4 at 7.39 mu m. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found. (C) 2016 Optical Society of America
引用
收藏
页码:A536 / A543
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2009, Cavity ring-down spectroscopy: Techniques and applications
[2]  
[Anonymous], 2014, SPRINGER SERIES OPTI
[3]   Noise-Immune Cavity-Enhanced Optical Heterodyne Detection of HO2 in the Near-Infrared Range [J].
Bell, Claire L. ;
van Helden, Jean-Pierre H. ;
Blaikie, Tom P. J. ;
Hancock, Gus ;
van Leeuwen, Nicola J. ;
Peverall, Robert ;
Ritchie, Grant A. D. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (21) :5090-5099
[4]   Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser [J].
Bergin, A. G. V. ;
Hancock, G. ;
Ritchie, G. A. D. ;
Weidmann, D. .
OPTICS LETTERS, 2013, 38 (14) :2475-2477
[5]   Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser [J].
Courtillot, I. ;
Morville, J. ;
Motto-Ros, V. ;
Romanini, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (2-3) :407-412
[6]   Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit [J].
Gorrotxategi-Carbajo, P. ;
Fasci, E. ;
Ventrillard, I. ;
Carras, M. ;
Maisons, G. ;
Romanini, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 110 (03) :309-314
[7]   Invited Article: SUBGLACIOR: An optical analyzer embedded in an Antarctic ice probe for exploring the past climate [J].
Grilli, R. ;
Marrocco, N. ;
Desbois, T. ;
Guillerm, C. ;
Triest, J. ;
Kerstel, E. ;
Romanini, D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11)
[8]   A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air [J].
Hamilton, D. J. ;
Orr-Ewing, A. J. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 102 (04) :879-890
[9]   Looking into the volcano with a mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy [J].
Kassi, S. ;
Chenevier, M. ;
Gianfrani, L. ;
Salhi, A. ;
Rouillard, Y. ;
Ouvrard, A. ;
Romanini, D. .
OPTICS EXPRESS, 2006, 14 (23) :11442-11452
[10]   Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser [J].
Maisons, G. ;
Carbajo, P. Gorrotxategi ;
Carras, M. ;
Romanini, D. .
OPTICS LETTERS, 2010, 35 (21) :3607-3609