Numerical modeling of formability of extruded magnesium alloy tubes

被引:96
作者
Levesque, J. [2 ]
Inal, K. [1 ]
Neale, K. W. [3 ]
Mishra, R. K. [4 ]
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Laval, Dept Mech Engn, Quebec City, PQ G1K 7P4, Canada
[3] Univ Sherbrooke, Dept Civil Engn, Sherbrooke, PQ J1K 2R1, Canada
[4] GM Corp, Ctr Res & Dev, Warren, MI 48090 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Crystal plasticity; Forming limit diagrams; Marciniak-Kuczynski (M-K) analysis; Magnesium alloys; HCP metals; TEXTURE DEVELOPMENT; MG ALLOY; PREDICTION; EVOLUTION;
D O I
10.1016/j.ijplas.2009.05.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate the large strain deformation phenomena in hexagonal closed-packed (HCP) metals such as magnesium. The new framework is incorporated into in-house codes. Simulations are performed using the new crystal plasticity model in which crystallographic slip and deformation twinning are the principal deformation mechanisms. Simulations of various stress states (uniaxial tension, uniaxial compression and the so-called ring hoop tension test) for the magnesium alloy AM30 are performed and the results are compared with experimental observations of specimens deformed at 200 degrees C. Numerical simulations of forming limit diagrams (FLDs) are also performed using the Marciniak-Kuczynski (M-K) approach. With this formulation, the effects of crystallographic slip and deformation twinning on the FLD can be assessed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 83
页数:19
相关论文
共 22 条
[1]   OVERVIEW .42. TEXTURE DEVELOPMENT AND STRAIN-HARDENING IN RATE DEPENDENT POLYCRYSTALS [J].
ASARO, RJ ;
NEEDLEMAN, A .
ACTA METALLURGICA, 1985, 33 (06) :923-953
[2]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[3]  
Hutchinson J.W., 1978, MECH SHEET METAL FOR, P127, DOI [DOI 10.1007/978-1-4613-2880-36, 10.1007/978-1-4613-2880-3_6, DOI 10.1007/978-1-4613-2880-3_6]
[4]   Forming limit comparisons for FCC and BCC sheets [J].
Inal, K ;
Neale, KW ;
Aboutajeddine, A .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (06) :1255-1266
[5]   Twinning and texture development in two Mg alloys subjected to loading along three different strain paths [J].
Jiang, L. ;
Jonas, J. J. ;
Mishra, R. K. ;
Luo, A. A. ;
Sachdev, A. K. ;
Godet, S. .
ACTA MATERIALIA, 2007, 55 (11) :3899-3910
[6]   Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures [J].
Jiang, L ;
Jonas, JJ ;
Luo, AA ;
Sachdev, AK ;
Godet, S .
SCRIPTA MATERIALIA, 2006, 54 (05) :771-775
[7]  
Johnston G. B., 1983, Proceedings of the 37th annual meeting of the Northeastern Weed Science Society, 1983., P51
[8]   Incorporation of deformation twinning in crystal plasticity models [J].
Kalidindi, SR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (02) :267-+
[9]  
Keeler S.P., 1961, ASM Trans
[10]   Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets [J].
Lee, Myoung-Gyu ;
Wagoner, R. H. ;
Lee, J. K. ;
Chung, K. ;
Kim, H. Y. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (04) :545-582