Least energy sign-changing solutions for a class of Schrodinger-Poisson system on bounded domains

被引:8
作者
Khoutir, Sofiane [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Fac Math, PB 32 El Alia, Algiers 16111, Algeria
关键词
NONTRIVIAL SOLUTIONS; EXISTENCE;
D O I
10.1063/5.0040741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the Schrodinger-Poisson system -Delta u + phi u = lambda u + mu|u|(2)u and -Delta phi = u(2) setting on a bounded domain Omega subset of R-3 with smooth boundary and lambda,mu is an element of R being parameters. By using variational techniques in combination with the nodal Nehari manifold method, we show the existence of (mu) over bar > 0 such that for all (lambda,mu)is an element of(-infinity,lambda(1))x((mu) over bar,+infinity), the above system has one least energy sign-changing solution, where lambda(1) > 0 is the first eigenvalue of (-Delta,H-0(1)(Omega)). The results of this paper are complementary to those in Alves and Souto [Z. Angew. Math. Phys. 65, 1153-1166 (2014)].
引用
收藏
页数:10
相关论文
共 17 条
[1]   Existence of Nontrivial Solutions for Schrodinger-Poisson Systems with Critical Exponent on Bounded Domains [J].
Almuaalemi, Belal ;
Chen, Haibo ;
Khoutir, Sofiane .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) :1675-1686
[2]   Existence and multiplicity of nontrivial solutions for Schrodinger-Poisson systems on bounded domains [J].
Almuaalemi, Belal ;
Chen, Haibo ;
Khoutir, Sofiane .
BOUNDARY VALUE PROBLEMS, 2018,
[3]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[4]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[5]   Solutions for a class of Schrödinger–Poisson system in bounded domains [J].
Ba Z. ;
He X. .
Journal of Applied Mathematics and Computing, 2015, 51 (1-2) :287-297
[6]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[7]  
Benci V., 1998, Topol. Methods Nonlinear Anal, V11, P283293
[8]  
Bobkov V, 2014, ELECTRON J QUAL THEO, P1
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]   Nontrivial solutions of Kirchhoff-type problems via the Yang index [J].
Perera, K ;
Zhang, ZT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (01) :246-255