The challenges of predicting transposable element activity in hybrids

被引:9
作者
Henault, Mathieu [1 ,2 ,3 ,4 ]
机构
[1] Univ Laval, Inst Biol Integrat & Syst IBIS, Quebec City, PQ, Canada
[2] Univ Laval, Dept Biochim Microbiol & Bioinformat, Quebec City, PQ, Canada
[3] Univ Laval, Quebec Network Res Prot Funct Engn & Applicat PRO, Quebec City, PQ, Canada
[4] Univ Laval, Big Data Res Ctr BDRC UL, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Transposable elements; Hybridization; Genome ecology; Saccharomyces; Drosophila; Hybrid dysgenesis; RESTRICTS TY1 RETROTRANSPOSITION; DROSOPHILA-MELANOGASTER; GENOME; HYBRIDIZATION; EVOLUTION; MUTATION; ACTIVATION; STERILITY; DYNAMICS; RATES;
D O I
10.1007/s00294-021-01169-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transposable elements (TEs) are ubiquitous mobile genetic elements that hold both disruptive and adaptive potential for species. It has long been postulated that their activity may be triggered by hybridization, a hypothesis that received mixed support from studies in various species. While host defense mechanisms against TEs are being elucidated, the increasing volume of genomic data and bioinformatic tools specialized in TE detection enable in-depth characterization of TEs at the levels of species and populations. Here, I borrow elements from the genome ecology theory to illustrate how knowledge of the diversity of TEs and host defense mechanisms may help predict the activity of TEs in the face of hybridization, and how current limitations make this task especially challenging.
引用
收藏
页码:567 / 572
页数:6
相关论文
共 50 条
  • [21] Modeling transposable element dynamics with fragmentation equations
    Banuelos, Mario
    Sindi, Suzanne
    MATHEMATICAL BIOSCIENCES, 2018, 302 : 46 - 66
  • [22] THE GENERATION OF MUTATOR TRANSPOSABLE ELEMENT SUBFAMILIES IN MAIZE
    BENNETZEN, JL
    SPRINGER, PS
    THEORETICAL AND APPLIED GENETICS, 1994, 87 (06) : 657 - 667
  • [23] Dynamics and Impacts of Transposable Element Proliferation in the Drosophila nasuta Species Group Radiation
    Wei, Kevin H-C
    Mai, Dat
    Chatla, Kamalakar
    Bachtrog, Doris
    MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (05)
  • [24] Centromere Remodeling in Hoolock leuconedys (Hylobatidae) by a New Transposable Element Unique to the Gibbons
    Carbone, Lucia
    Harris, R. Alan
    Mootnick, Alan R.
    Milosavljevic, Aleksandar
    Martin, David I. K.
    Rocchi, Mariano
    Capozzi, Oronzo
    Archidiacono, Nicoletta
    Konkel, Miriam K.
    Walker, Jerilyn A.
    Batzer, Mark A.
    de Jong, Pieter J.
    GENOME BIOLOGY AND EVOLUTION, 2012, 4 (07): : 760 - 770
  • [25] Miniature Inverted-Repeat Transposable Element Identification and Genetic Marker Development in Agrostis
    Amundsen, Keenan
    Rotter, David
    Li, Huaijun Michael
    Messing, Joachim
    Jung, Geunhwa
    Belanger, Faith
    Warnke, Scott
    CROP SCIENCE, 2011, 51 (02) : 854 - 861
  • [26] Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes
    Rius, Nuria
    Guillen, Yolanda
    Delprat, Alejandra
    Kapusta, Aurelie
    Feschotte, Cedric
    Ruiz, Alfredo
    BMC GENOMICS, 2016, 17
  • [27] Effects of Wolbachia on Transposable Element Expression Vary Between Drosophila melanogaster Host Genotypes
    Eugenio, Ana T.
    Marialva, Marta S. P.
    Beldade, Patricia
    GENOME BIOLOGY AND EVOLUTION, 2023, 15 (03):
  • [28] Transposable element activity, genome regulation and human health
    Wang, Lu
    Jordan, I. King
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2018, 49 : 25 - 33
  • [29] Intrinsic Characteristics of Neighboring DNA Modulate Transposable Element Activity in Drosophila melanogaster
    Esnault, Caroline
    Palavesam, Azhahianambi
    Pilitt, Kristina
    O'Brochta, David A.
    GENETICS, 2011, 187 (01) : 319 - 331
  • [30] Maintenance of long-term transposable element activity through regulation by nonautonomous elements
    Omole, Adekanmi Daniel
    Czuppon, Peter
    GENETICS, 2025, 229 (02)