Entanglement entropy in the O(N) model

被引:149
作者
Metlitski, Max A. [1 ]
Fuertes, Carlos A. [2 ]
Sachdev, Subir [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] UAM, CSIC, Inst Fis Teor, Fac Ciencias C 16, E-28049 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.80.115122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is generally believed that in spatial dimension d > 1, the leading contribution to the entanglement entropy S=-tr rho A log rho A scales as the area of the boundary of subsystem A. The coefficient of this "area law" is nonuniversal. However, in the neighborhood of a quantum critical point S is believed to possess subleading universal corrections. In the present work, we study the entanglement entropy in the quantum O(N) model in 1 < d < 3. We use an expansion in epsilon = 3-d to evaluate (i) the universal geometric correction to S for an infinite cylinder divided along a circular boundary; (ii) the universal correction to S due to a finite correlation length. Both corrections are different at the Wilson-Fisher and Gaussian fixed points, and the epsilon -> 0 limit of the Wilson-Fisher fixed point is distinct from the Gaussian fixed point. In addition, we compute the correlation length correction to the Renyi entropy S-n = 1/1-n log tr rho(n)(A) in epsilon and large-N expansions. For N -> infinity, this correction generally scales as N-2 rather than the naively expected N. Moreover, the Renyi entropy has a phase transition as a function of n for d close to 3.
引用
收藏
页数:20
相关论文
共 25 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[3]   Numerical study of entanglement entropy in SU(2) lattice gauge theory [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
NUCLEAR PHYSICS B, 2008, 802 (03) :458-474
[4]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[5]   Entanglement entropy and twist fields [J].
Caraglio, Michele ;
Gliozzi, Ferdinando .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11)
[6]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[7]   Entanglement and alpha entropies for a massive scalar field in two dimensions [J].
Casini, H ;
Huerta, M .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :291-307
[8]   Entanglement entropy for a Dirac fermion in three dimensions: Vertex contribution [J].
Casini, H. ;
Huerta, A. ;
Leitao, L. .
NUCLEAR PHYSICS B, 2009, 814 (03) :594-609
[9]   The theory of boundary critical phenomena [J].
Diehl, HW .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (30) :3503-3523
[10]  
EISERT J, REV MOD PHY IN PRESS