Equitable partition of planar graphs

被引:4
作者
Kim, Ringi [1 ]
Oum, Sang-il [2 ,3 ]
Zhang, Xin [4 ]
机构
[1] Inha Univ, Dept Math, Incheon, South Korea
[2] Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Induced forest; Degenerate graph; Equitable partition; Planar graph;
D O I
10.1016/j.disc.2021.112351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equitable k-partition of a graph G is a collection of induced subgraphs (G[V-1], G[V-2], ... , G[V-k]) of G such that (V-1, V-2, ... , V-k) is a partition of V(G) and -1 <= |V-i| - |V-j| <= 1 for all 1 <= i < j <= k. We prove that every planar graph admits an equitable 2-partition into 3-degenerate graphs, an equitable 3-partition into 2-degenerate graphs, and an equitable 3-partition into two forests and one graph. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Acyclic 4-Choosability of Planar Graphs with No 4- and 5-Cycles [J].
Borodin, Oleg V. ;
Ivanova, Anna O. .
JOURNAL OF GRAPH THEORY, 2013, 72 (04) :374-397
[2]  
BORODIN OV, 1976, DOKL AKAD NAUK SSSR+, V231, P18
[3]   A result on linear coloring of planar graphs [J].
Cai, Chunli ;
Xie, Dezheng ;
Yang, Wenjuan .
INFORMATION PROCESSING LETTERS, 2012, 112 (22) :880-884
[4]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[5]   EQUITABLE COLORING AND THE MAXIMUM DEGREE [J].
CHEN, BL ;
LIH, KW ;
WU, PL .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) :443-447
[6]   Planar graphs without 4-and 5-cycles are acyclically 4-choosable [J].
Chen, Min ;
Raspaud, Andre .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) :921-931
[7]   Equitable partition of graphs into induced forests [J].
Esperet, Louis ;
Lemoine, Laetitia ;
Maffray, Frederic .
DISCRETE MATHEMATICS, 2015, 338 (08) :1481-1483
[8]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408
[9]  
Hajnal A., 1969, COMBINATORIAL THEORY, P601
[10]   A short proof of the Hajnal-Szemeredi theorem on equitable colouring [J].
Kierstead, H. A. ;
Kostochka, A. V. .
COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02) :265-270