Remarks on a posteriori error estimation for finite element solutions

被引:12
作者
Kikuchi, Fumio [1 ]
Saito, Hironobu
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
[2] COMPS Informat Technol Inst, Tokyo, Japan
关键词
hypercircle method; error bound; P-l triangular element; Raviait-Thomas triangular element;
D O I
10.1016/j.cam.2005.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We utilize the classical hypercircle method and the lowest-order Raviart-Thomas H(div) element to obtain a posteriori error estimates of the PI finite element solutions for 2D Poisson's equation. A few other estimation methods are also discussed for comparison. We give some theoretical and numerical results to see the effectiveness of the methods. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 336
页数:8
相关论文
共 13 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]   A posteriori error bounds by "local corrections" using the dual mesh [J].
Bossavit, A .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1350-1353
[3]  
Brenner S.C., 2002, MATH THEORY FINITE E
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]  
Ciarlet P., 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
[6]   Explicit error bounds in a conforming finite element method [J].
Destuynder, P ;
Métivet, B .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1379-1396
[7]  
Eriksson D., 1996, COMPUTATIONAL DIFFER
[8]  
Knabner P., 2003, NUMERICAL METHODS EL
[9]  
Marques G, 2000, IEEE T MAGN, V36, P1588, DOI 10.1109/20.877743
[10]  
NAKAO M, 1998, NUMERICAL METHODS GU