Fusion rules in Navier-Stokes turbulence: First experimental tests

被引:20
作者
Fairhall, AL [1 ]
Dhruva, B [1 ]
Lvov, VS [1 ]
Procaccia, I [1 ]
Sreenivasan, KR [1 ]
机构
[1] YALE UNIV,MASON LAB,NEW HAVEN,CT 06520
关键词
D O I
10.1103/PhysRevLett.79.3174
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first experimental tests of the recently derived fusion rules for Navier-Stokes turbulence. The fusion rules address the asymptotic properties of many-point correlation functions as some of the coordinates coalesce. and form an important ingredient of the nonperturbative statistical theory of turbulence. Here we test the fusion rules when the spatial separations lie within the inertial range, and find good agreement between experiment and theory. For inertial-range separations and for velocity increments which are not too large, a simple linear relation appears to exist for the Laplacian of the velocity fluctuation conditioned on velocity increments. [S0031-9007(97)04425-6].
引用
收藏
页码:3174 / 3177
页数:4
相关论文
共 14 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]   Conditional statistics in scalar turbulence: Theory versus experiment [J].
Ching, ESC ;
Lvov, VS ;
Podivilov, E ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 54 (06) :6364-6371
[3]   RENORMALIZATION-GROUP AND OPERATOR PRODUCT EXPANSION IN TURBULENCE - SHELL MODELS [J].
EYINK, GL .
PHYSICAL REVIEW E, 1993, 48 (03) :1823-1838
[4]   Anomalous scaling in a model of passive scalar advection: Exact results [J].
Fairhall, AL ;
Gat, O ;
Lvov, V ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 53 (04) :3518-3535
[5]  
Frish U., 1995, LEGACY AN KOLMOGOROV
[6]   CONDITIONAL SCALAR DISSIPATION RATES IN TURBULENT WAKES, JETS, AND BOUNDARY-LAYERS [J].
KAILASNATH, P ;
SREENIVASAN, KR ;
SAYLOR, JR .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (12) :3207-3215
[7]   ANOMALOUS SCALING OF A RANDOMLY ADVECTED PASSIVE SCALAR [J].
KRAICHNAN, RH .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :1016-1019
[8]   Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions [J].
Lvov, V ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 54 (06) :6268-6284
[9]   Viscous lengths in hydrodynamic turbulence are anomalous scaling functions [J].
Lvov, VS ;
Procaccia, I .
PHYSICAL REVIEW LETTERS, 1996, 77 (17) :3541-3544
[10]  
LVOV VS, 1996, PHYS REV LETT, V76, P2896