The Time Fractional Schrodinger Equation on Hilbert Space

被引:21
作者
Gorka, Przemyslaw [1 ]
Prado, Humberto [2 ]
Trujillo, Juan [3 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Casilla 307 Correo 2, Santiago, Chile
[3] Univ La Laguna, Dept Anal Matemat, Tenerife, Spain
关键词
Fractional quantum mechanics; Caputo derivative; Schrodinger equation;
D O I
10.1007/s00020-017-2341-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the linear fractional Schrodinger equation on a Hilbert space, with a fractional time derivative of order and a self-adjoint generator A. Using the spectral theorem we prove existence and uniqueness of strong solutions, and we show that the solutions are governed by an operator solution family . Moreover, we prove that the solution family converges strongly to the family of unitary operators e(-itA), as approaches to 1.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 16 条
  • [1] [Anonymous], 2006, THEORY APPL FRACTION
  • [2] Superdiffusion on a comb structure
    Baskin, E
    Iomin, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 120603 - 1
  • [3] Time fractional Schrodinger equation: Fox's H-functions and the effective potential
    Bayin, Selcuk S.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [4] Bazhlekova E., 2001, THESIS
  • [5] Space-time fractional Schrodinger equation with time-independent potentials
    Dong, Jianping
    Xu, Mingyu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 1005 - 1017
  • [6] A numerical method for the fractional Schrodinger type equation of spatial dimension two
    Ford, Neville J.
    Manuela Rodrigues, M.
    Vieira, Nelson
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 454 - 468
  • [7] Gorenflo R., 2000, Fract. Calc. Appl. Anal., V3, P75
  • [8] Gorenflo R., 2002, Fract. Calc. Appl. Anal., V5, P491
  • [9] Iomin A., ARXIV09091183V1
  • [10] Iomin A., ARXIV11086178V1