A compression shear mixed finite element model for vibration and damping analysis of viscoelastic sandwich structures

被引:18
作者
Huang, Zhicheng [1 ,2 ]
Qin, Zhaoye [1 ]
Chui, Fulei [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China
[2] Jingdezhen Ceram Inst, Coll Mech & Elect Engn, Jingdezhen, Peoples R China
关键词
Viscoelastic material; sandwich structures; compression shear damping; finite element method; vibration and damping analysis; BEAMS; FREQUENCY; COMPOSITE; 3-LAYER; DESIGN;
D O I
10.1177/1099636218794576
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A finite element model is developed to investigate the vibration and damping of elastic-viscoelastic-elastic sandwich beams. Two energy dissipation mechanisms, namely the shear and compression damping, are combined in the finite element model. Numerical examples are provided to verify the finite element model. The vibration and damping characteristics of the viscoelastic sandwich beams are investigated in detail. The numerical results show that the present finite element model has a good accuracy in predicting the natural frequencies and loss factors of viscoelastic sandwich beam structures. Moreover, it shows good applicability for both the thin and relatively thick sandwich beams. Its comprehensive performance is much better than the traditional shear and compression damping models. The effect of the viscoelastic material and geometrical parameters on the natural frequencies and loss factors of elastic-viscoelastic-elastic sandwich beam is studied as well. The results obtained have some significance in engineering application.
引用
收藏
页码:1775 / 1798
页数:24
相关论文
共 28 条
[1]   Forced harmonic response of viscoelastic structures by an asymptotic numerical method [J].
Abdoun, F. ;
Azrar, L. ;
Daya, E. M. ;
Potier-Ferry, M. .
COMPUTERS & STRUCTURES, 2009, 87 (1-2) :91-100
[2]   Damping optimisation of hybrid active-passive sandwich composite structures [J].
Araujo, A. L. ;
Martins, P. ;
Mota Soares, C. M. ;
Mota Soares, C. A. ;
Herskovits, J. .
ADVANCES IN ENGINEERING SOFTWARE, 2012, 46 (01) :69-74
[3]   Finite Element Model for Hybrid Active-Passive Damping Analysis of Anisotropic Laminated Sandwich Structures [J].
Araujo, A. L. ;
Soares, C. M. Mota ;
Soares, C. A. Mota .
JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2010, 12 (04) :397-419
[4]   Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates [J].
Araujo, A. L. ;
Mota Soares, C. M. ;
Mota Soares, C. A. ;
Herskovits, J. .
COMPOSITE STRUCTURES, 2010, 92 (09) :2321-2327
[5]   A finite element model for harmonically excited viscoelastic sandwich beams [J].
Baber, TT ;
Maddox, RA ;
Orozco, CE .
COMPUTERS & STRUCTURES, 1998, 66 (01) :105-113
[6]   A finite element model for sandwich viscoelastic beams: Experimental and numerical assessment [J].
Barbosa, F. S. ;
Farage, M. C. R. .
JOURNAL OF SOUND AND VIBRATION, 2008, 317 (1-2) :91-111
[7]  
Barkanov E, 1999, INT J NUMER METH ENG, V44, P393, DOI 10.1002/(SICI)1097-0207(19990130)44:3<393::AID-NME511>3.0.CO
[8]  
2-P
[9]   Characterisation of viscoelastic layers in sandwich panels via an inverse technique [J].
Barkanov, E. ;
Skukis, E. ;
Petitjean, B. .
JOURNAL OF SOUND AND VIBRATION, 2009, 327 (3-5) :402-412
[10]   Complex modes based numerical analysis of viscoelastic sandwich plates vibrations [J].
Bilasse, M. ;
Azrar, L. ;
Daya, E. M. .
COMPUTERS & STRUCTURES, 2011, 89 (7-8) :539-555