A Review of the State of the Art and Future Challenges of Deep Learning-Based Beamforming

被引:28
作者
Al Kassir, Haya [1 ]
Zaharis, Zaharias D. [1 ]
Lazaridis, Pavlos, I [2 ]
Kantartzis, Nikolaos, V [1 ]
Yioultsis, Traianos, V [1 ]
Xenos, Thomas D. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Elect & Comp Engn, Thessaloniki 54124, Greece
[2] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
基金
欧盟地平线“2020”;
关键词
Array signal processing; Antenna arrays; Direction-of-arrival estimation; Interference; Maximum likelihood estimation; Convergence; Support vector machines; Artificial intelligence; beamforming; deep learning; deep neural networks; direction of arrival estimation; intelligent reflecting surfaces; machine learning; massive MIMO; MIMO; neural networks; LARGE INTELLIGENT SURFACES; WAVE MASSIVE MIMO; ARRIVAL ESTIMATION; NEURAL-NETWORKS; ANTENNA-ARRAY; DESIGN; OPTIMIZATION; PERFORMANCE; DOWNLINK; SYSTEM;
D O I
10.1109/ACCESS.2022.3195299
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The key objective of this paper is to explore the recent state-of-the-art artificial intelligence (AI) applications on the broad field of beamforming. Hence, a multitude of AI-oriented beamforming studies are thoroughly investigated in order to correctly comprehend and profitably interpret the AI contribution in the beamforming performance. Starting from a brief overview of beamforming, including adaptive beamforming algorithms and direction of arrival (DOA) estimation methods, our analysis probes further into the main machine learning (ML) classes, the basic neural network (NN) topologies, and the most efficient deep learning (DL) schemes. Subsequently, and based on the prior aspects, the paper explores several concepts regarding the optimal use of ML and NNs either as standalone beamforming and DOA estimation techniques or in combination with other implementations, such as ultrasound imaging, massive multiple-input multiple-output structures, and intelligent reflecting surfaces. Finally, particular attention is drawn on the realization of beamforming or DOA estimation setups via DL topologies. The survey closes with various important conclusions along with an interesting discussion on potential future aspects and promising research challenges.
引用
收藏
页码:80869 / 80882
页数:14
相关论文
共 50 条
  • [21] Deep-learning-based beamforming for rejecting interferences
    Ramezanpour, Parham
    Rezaei, Mohammad Javad
    Mosavi, Mohammad Reza
    IET SIGNAL PROCESSING, 2020, 14 (07) : 467 - 473
  • [22] Deep Transfer Learning-Based Adaptive Beamforming for Realistic Communication Channels
    Yang, Hyewon
    Jee, Jeongju
    Kwon, Girim
    Park, Hyuncheol
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1373 - 1376
  • [23] Unsupervised Deep Learning-Based Hybrid Beamforming in Massive MISO Systems
    Zhang, Teng
    Dong, Anming
    Zhang, Chuanting
    Yu, Jiguo
    Qiu, Jing
    Li, Sufang
    Zhang, Li
    Zhou, You
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT II, 2022, 13472 : 3 - 15
  • [24] Deep learning-based PET image denoising and reconstruction: a review
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 24 - 46
  • [25] Deep Learning-Based Intrusion Detection Systems: A Systematic Review
    Lansky, Jan
    Ali, Saqib
    Mohammadi, Mokhtar
    Majeed, Mohammed Kamal
    Karim, Sarkhel H. Taher
    Rashidi, Shima
    Hosseinzadeh, Mehdi
    Rahmani, Amir Masoud
    IEEE ACCESS, 2021, 9 : 101574 - 101599
  • [26] A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends
    Mohsan, Syed Agha Hassnain
    Li, Yanlong
    Shvetsov, Alexey V. V.
    Varela-Aldas, Jose
    Mostafa, Samih M. M.
    Elfikky, Abdelrahman
    SENSORS, 2023, 23 (06)
  • [27] Deep Learning-Based Energy Beamforming With Transmit Power Control in Wireless Powered Communication Networks
    Hameed, Iqra
    Tuan, Pham, V
    Koo, Insoo
    IEEE ACCESS, 2021, 9 : 142795 - 142803
  • [28] Deep learning-based channel estimation in MIMO system for pilot decontamination
    Reddy, Gondhi Navabharat
    Kumar, C. V. Ravi
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2023, 44 (03) : 148 - 166
  • [29] Deep Learning-Based Multimedia Analytics: A Review
    Zhang, Wei
    Yao, Ting
    Zhu, Shiai
    El Saddik, Abdulmotaleb
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
  • [30] Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges
    Murtaza, Ghulam
    Shuib, Liyana
    Wahab, Ainuddin Wahid Abdul
    Mujtaba, Ghulam
    Nweke, Henry Friday
    Al-garadi, Mohammed Ali
    Zulfiqar, Fariha
    Raza, Ghulam
    Azmi, Nor Aniza
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (03) : 1655 - 1720